These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 1338249)
1. [The mono- and polysynaptic connections between identified neurons in the system of the passive defensive reflex in the edible snail]. Palikhova TA; Marakueva IV; Arakelov GG Zh Vyssh Nerv Deiat Im I P Pavlova; 1992; 42(6):1170-9. PubMed ID: 1338249 [TBL] [Abstract][Full Text] [Related]
2. Mono- and polysynaptic connections between identified neurons in the system of the passive avoidance reflex of the snail. Palikhova TA; Marakueva IV; Arakelov GG Neurosci Behav Physiol; 1994; 24(1):71-6. PubMed ID: 8208385 [TBL] [Abstract][Full Text] [Related]
3. [Principle of neuronal organization of defensive reflexes in mollusks]. Logunov DB; Konnov MI Neirofiziologiia; 1984; 16(1):26-34. PubMed ID: 6325959 [TBL] [Abstract][Full Text] [Related]
4. [Synapses identifiable in the parietal ganglia of the snail Helix lucorum]. Palikhova TA Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(5):775-90. PubMed ID: 11084995 [TBL] [Abstract][Full Text] [Related]
5. Elementary and compound postsynaptic potentials in the defensive command neurons of Helix lucorum. Sokolov EN; Palikhova TA Acta Biol Hung; 1999; 50(1-3):235-45. PubMed ID: 10574443 [TBL] [Abstract][Full Text] [Related]
6. Postsynaptic mechanism of withdrawal reflex sensitization in the snail. Balaban PM J Neurobiol; 1983 Sep; 14(5):365-75. PubMed ID: 6311974 [TBL] [Abstract][Full Text] [Related]
7. [The active electrogenesis of the command neurons in the defensive behavior of the mollusk during conditioning]. Babkina NV; Tsitolovskiĭ LE Zh Vyssh Nerv Deiat Im I P Pavlova; 1991; 41(4):781-7. PubMed ID: 1660658 [TBL] [Abstract][Full Text] [Related]
8. [The presynaptic mechanisms enhancing the reactivity of the command neurons in the defensive behavior of the edible snail against the background of the action of a vasopressin analog]. Kudriashova IV Neirofiziologiia; 1990; 22(6):723-30. PubMed ID: 1965850 [TBL] [Abstract][Full Text] [Related]
9. [The neuronal mechanisms of site-specific nociceptive sensitization in the snail Helix lucorum]. Nikitin VP; Kozyrev SA Zh Vyssh Nerv Deiat Im I P Pavlova; 1997; 47(6):994-1003. PubMed ID: 9472164 [TBL] [Abstract][Full Text] [Related]
10. [Relation between fast and slow elemental synaptic potentials in command neurons in Helix lucorum taurica L]. Logunov DB Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(2):355-62. PubMed ID: 6305054 [TBL] [Abstract][Full Text] [Related]
11. [Effect of desglycine-arginine vasopressin on the excitability of the command neurons of the defensive reflex in the edible snail]. Kudriashova IV; Logunov DB; Papsuevich OS; Kruglikov RI Biull Eksp Biol Med; 1985 Jan; 99(1):5-7. PubMed ID: 3967071 [TBL] [Abstract][Full Text] [Related]
12. [The neurochemical basis of recurrent inhibition in the reflex arch of the defensive reaction]. Balaban PM; Bravarenko NI; Zakharov IS Zh Vyssh Nerv Deiat Im I P Pavlova; 1991; 41(5):1033-8. PubMed ID: 1684883 [TBL] [Abstract][Full Text] [Related]
13. [Organization of the sensory input of command neurons]. Bravarenko NI; Balaban PM; Sokolov EN Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(1):94-9. PubMed ID: 6278794 [TBL] [Abstract][Full Text] [Related]
14. [Correlation between the plasticity of monosynaptic inputs of command neurons of Helix lucorum and the plastic properties of the chemoreceptive membrane during rhythmic stimulation]. Norekian TP; Logunov DB Neirofiziologiia; 1985; 17(2):279-82. PubMed ID: 2987710 [TBL] [Abstract][Full Text] [Related]
15. [The duration of the storage of the electrical characteristics of command neurons in the acquisition of long-term sensitization in the snail]. Gaĭnutdinova TKh; Andrianov VV; Nazyrova RR; Gaĭnutdinov KhL Zh Vyssh Nerv Deiat Im I P Pavlova; 1999; 49(6):1063-5. PubMed ID: 10693288 [TBL] [Abstract][Full Text] [Related]
16. [The monosynaptic connection: identified synapses in the CNS of the edible snail]. Arakelov GG; Marakueva IV; Palikhova TA Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(4):737-45. PubMed ID: 2479192 [TBL] [Abstract][Full Text] [Related]
17. [Suppression of the synaptic input of the command neurons of defensive behavior by stimulation of the mesocerebral neurons in a preparation of the isolated snail CNS]. Maksimova OA Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(1):163-70. PubMed ID: 7754687 [TBL] [Abstract][Full Text] [Related]
18. [Changes in the electrical characteristics of the command neurons during the acquisition of a conditioned defensive reflex in the snail]. Gaĭnutdinov KhL; Gaĭnutdinova TKh; Chekmarev LIu Zh Vyssh Nerv Deiat Im I P Pavlova; 1996; 46(3):614-6. PubMed ID: 8755072 [No Abstract] [Full Text] [Related]
19. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors. Fiumara F; Leitinger G; Milanese C; Montarolo PG; Ghirardi M Neuroscience; 2005; 134(4):1133-51. PubMed ID: 16054762 [TBL] [Abstract][Full Text] [Related]
20. [Comparative analysis of the statistical parameters of synaptic transmission of central neurons in the snail Helix lucorum and in the rabbit]. Voronin LL; Bashkis AB; Gusev AG; Dereviagin VI; Logunov DB Zh Evol Biokhim Fiziol; 1983; 19(4):359-68. PubMed ID: 6314706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]