These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 13382820)
21. Development of marker genes for jasmonic acid signaling in shoots and roots of wheat. Liu H; Carvalhais LC; Kazan K; Schenk PM Plant Signal Behav; 2016 May; 11(5):e1176654. PubMed ID: 27115051 [TBL] [Abstract][Full Text] [Related]
22. Toxic effects of perfluorooctane sulfonate (PFOS) on wheat (Triticum aestivum L.) plant. Qu B; Zhao H; Zhou J Chemosphere; 2010 Apr; 79(5):555-60. PubMed ID: 20193959 [TBL] [Abstract][Full Text] [Related]
23. [Relation of rooting energy in vernal wheat to formation of primary germinal roots]. ROMOSHCHENKOV DD Dokl Akad Nauk SSSR; 1951 Jul; 79(2):349-52. PubMed ID: 14860016 [No Abstract] [Full Text] [Related]
24. The role of wheat germ agglutinin in the attachment of Pseudomonas sp. WS32 to wheat root. Zhang J; Meng L; Cao Y; Chang H; Ma Z; Sun L; Zhang M; Tang X J Microbiol; 2014 Dec; 52(12):1020-4. PubMed ID: 25467119 [TBL] [Abstract][Full Text] [Related]
25. Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. Bernardo L; Morcia C; Carletti P; Ghizzoni R; Badeck FW; Rizza F; Lucini L; Terzi V J Proteomics; 2017 Oct; 169():21-32. PubMed ID: 28366879 [TBL] [Abstract][Full Text] [Related]
26. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Dimkpa CO; McLean JE; Martineau N; Britt DW; Haverkamp R; Anderson AJ Environ Sci Technol; 2013 Jan; 47(2):1082-90. PubMed ID: 23259709 [TBL] [Abstract][Full Text] [Related]
27. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress. Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969 [TBL] [Abstract][Full Text] [Related]
28. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Zhang Z; Ke M; Qu Q; Peijnenburg WJGM; Lu T; Zhang Q; Ye Y; Xu P; Du B; Sun L; Qian H Environ Pollut; 2018 Aug; 239():689-697. PubMed ID: 29715688 [TBL] [Abstract][Full Text] [Related]
29. [Wheat germ agglutinin participates in regulation of cell division in apical root meristem of wheat seedlings]. Bezrukova MV; Kil'dibekova AP; Aval'baev AM; Shakirova FM Tsitologiia; 2004; 46(1):35-8. PubMed ID: 15112429 [TBL] [Abstract][Full Text] [Related]
30. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants. Soltani A; Kumar A; Mergoum M; Pirseyedi SM; Hegstad JB; Mazaheri M; Kianian SF Funct Integr Genomics; 2016 Mar; 16(2):171-82. PubMed ID: 26860316 [TBL] [Abstract][Full Text] [Related]
31. [Energy metabolism in wheat roots during modification of cell surface]. Nikolaev BA; Alekseeva VIa; Gordon LKh; Loseva NL; Aliab'ev AIu Tsitologiia; 2000; 42(6):568-72. PubMed ID: 10953862 [TBL] [Abstract][Full Text] [Related]
32. [Initial stages of interaction of Azospirillum brasilense bacteria with wheat germ roots: adsorption, deformation of root hairs]. Egorenkova IV; Konnova SA; Skvortsov IM; Ignatov VV Mikrobiologiia; 2000; 69(1):120-6. PubMed ID: 10808499 [TBL] [Abstract][Full Text] [Related]
33. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.). Hu H; He J; Zhao J; Ou X; Li H; Ru Z Genes Genomics; 2018 Nov; 40(11):1199-1211. PubMed ID: 30315523 [TBL] [Abstract][Full Text] [Related]
34. [Effect of glucose on the regulation of the enzymatic metabolism of wheat roots]. LEJEUNE B; de GOURNAY-MARGERIE C R Hebd Seances Acad Sci; 1961 Jan; 252():211-3. PubMed ID: 13760625 [No Abstract] [Full Text] [Related]
35. Physiological and Antioxidant Responses in Wheat (Triticum aestivum) to HHCB in Soil. Chen C; Cai Z Bull Environ Contam Toxicol; 2015 Aug; 95(2):272-7. PubMed ID: 26013820 [TBL] [Abstract][Full Text] [Related]
36. Study of cytokinin transport from shoots to roots of wheat plants is informed by a novel method of differential localization of free cytokinin bases or their ribosylated forms by means of their specific fixation. Veselov SY; Timergalina LN; Akhiyarova GR; Kudoyarova GR; Korobova AV; Ivanov I; Arkhipova TN; Prinsen E Protoplasma; 2018 Sep; 255(5):1581-1594. PubMed ID: 29637285 [TBL] [Abstract][Full Text] [Related]
37. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Larue C; Laurette J; Herlin-Boime N; Khodja H; Fayard B; Flank AM; Brisset F; Carriere M Sci Total Environ; 2012 Aug; 431():197-208. PubMed ID: 22684121 [TBL] [Abstract][Full Text] [Related]
38. Commentary on "Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings" reported by Lian-Zhen Li, Chen Tu, Willie J.G.M. Peijnenburg, Yong-Ming Luo. Sharifan H Environ Pollut; 2017 Dec; 231(Pt 1):1213-1214. PubMed ID: 28622963 [No Abstract] [Full Text] [Related]
39. Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Yannarelli GG; Fernández-Alvarez AJ; Santa-Cruz DM; Tomaro ML Phytochemistry; 2007 Feb; 68(4):505-12. PubMed ID: 17174990 [TBL] [Abstract][Full Text] [Related]
40. Abundance of the arbuscular mycorrhizal fungal taxa associated with the roots and rhizosphere soil of different durum wheat cultivars in the Canadian prairies. Ellouze W; Hamel C; Singh AK; Mishra V; DePauw RM; Knox RE Can J Microbiol; 2018 Aug; 64(8):527-536. PubMed ID: 29633625 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]