These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1338458)

  • 21. A delayed rectifier potassium current in Xenopus oocytes.
    Lu L; Montrose-Rafizadeh C; Hwang TC; Guggino WB
    Biophys J; 1990 Jun; 57(6):1117-23. PubMed ID: 2393700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low molecular weight poly(A)+ mRNA species encode factors that modulate gating of a non-Shaker A-type K+ channel.
    Chabala LD; Bakry N; Covarrubias M
    J Gen Physiol; 1993 Oct; 102(4):713-28. PubMed ID: 7903683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of voltage and extracellular Na(+) on amiloride block and transport kinetics of rat epithelial Na(+) channel expressed in Xenopus oocytes.
    Segal A; Awayda MS; Eggermont J; Van Driessche W; Weber WM
    Pflugers Arch; 2002 Mar; 443(5-6):882-91. PubMed ID: 11889589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
    Kanjhan R; Coulson EJ; Adams DJ; Bellingham MC
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1353-61. PubMed ID: 15947038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage dependence of the rheogenic Na+/K+ ATPase in the membrane of oocytes of Xenopus laevis.
    Lafaire AV; Schwarz W
    J Membr Biol; 1986; 91(1):43-51. PubMed ID: 3016280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation-independent inhibition by intracellular cyclic nucleotides of brain inwardly rectifying K+ current expressed in Xenopus oocytes.
    Ito H; Tsuchimochi H; Tada Y; Kurachi Y
    FEBS Lett; 1997 Jan; 402(1):12-6. PubMed ID: 9013848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland.
    Gregerson KA; Flagg TP; O'Neill TJ; Anderson M; Lauring O; Horel JS; Welling PA
    Endocrinology; 2001 Jul; 142(7):2820-32. PubMed ID: 11416001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the inward-rectifying potassium current in cat ventricular myocytes.
    Harvey RD; Ten Eick RE
    J Gen Physiol; 1988 Apr; 91(4):593-615. PubMed ID: 2455768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a K+ channel from potato leaves by functional expression in Xenopus oocytes.
    Brandt S; Fisahn J
    Plant Cell Physiol; 1998 Jun; 39(6):600-6. PubMed ID: 9697343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of an outward-rectifying potassium channel from maize mRNA and complementary RNA in Xenopus oocytes.
    Cao Y; Anderova M; Crawford NM; Schroeder JI
    Plant Cell; 1992 Aug; 4(8):961-9. PubMed ID: 1392603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Voltage-gated influx ion channels expressed in Xenopus oocytes after the administration of brain mRNA].
    Gerasimenko OV; Kostiuk PG; Liubanova OP; Fedulova SA; Shuba IaM
    Neirofiziologiia; 1991; 23(3):344-53. PubMed ID: 1715525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes.
    Ransom CB; Sontheimer H
    J Neurophysiol; 1995 Jan; 73(1):333-46. PubMed ID: 7714576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of clozapine on the delta- and kappa-opioid receptors and the G-protein-activated K+ (GIRK) channel expressed in Xenopus oocytes.
    Kobayashi T; Ikeda K; Kumanishi T
    Br J Pharmacol; 1998 Feb; 123(3):421-6. PubMed ID: 9504382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elementary properties of Kir2.1, a strong inwardly rectifying K(+) channel expressed by pigeon vestibular type II hair cells.
    Zampini V; Masetto S; Correia MJ
    Neuroscience; 2008 Sep; 155(4):1250-61. PubMed ID: 18652879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [K+] dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1).
    Lopatin AN; Nichols CG
    J Gen Physiol; 1996 Aug; 108(2):105-13. PubMed ID: 8854340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. kappa-Opioid receptor activates an inwardly rectifying K+ channel by a G protein-linked mechanism: coexpression in Xenopus oocytes.
    Ma GH; Miller RJ; Kuznetsov A; Philipson LH
    Mol Pharmacol; 1995 May; 47(5):1035-40. PubMed ID: 7746270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human FXYD2 G41R mutation responsible for renal hypomagnesemia behaves as an inward-rectifying cation channel.
    Sha Q; Pearson W; Burcea LC; Wigfall DA; Schlesinger PH; Nichols CG; Mercer RW
    Am J Physiol Renal Physiol; 2008 Jul; 295(1):F91-9. PubMed ID: 18448590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of voltage-activated ion channels by astrocytes and oligodendrocytes in the hippocampal slice.
    Sontheimer H; Waxman SG
    J Neurophysiol; 1993 Nov; 70(5):1863-73. PubMed ID: 7507520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. K+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH.
    Blatt MR
    J Gen Physiol; 1992 Apr; 99(4):615-44. PubMed ID: 1534573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Somatostatin increases a voltage-insensitive K+ conductance in rat CA1 hippocampal neurons.
    Schweitzer P; Madamba SG; Siggins GR
    J Neurophysiol; 1998 Mar; 79(3):1230-8. PubMed ID: 9497404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.