BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1339197)

  • 1. Depression of early protection against influenza virus infection by cyclophosphamide and its restoration by protein-bound polysaccharide.
    Tsuru S
    Kitasato Arch Exp Med; 1992 Sep; 65(2-3):97-110. PubMed ID: 1339197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depression of early protection against influenza virus infection by cyclophosphamide and its restoration by Y-19995 [2,4'-bis(1-methyl-2-dimethyl-aminoethoxyl)-3-benzoylpyridine dimaleate].
    Tsuru S; Shinomiya N; Nomoto K
    Nat Immun Cell Growth Regul; 1991; 10(1):1-11. PubMed ID: 2057018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of protection during the early phase of a generalized viral infection. II. Contribution of polymorphonuclear leukocytes to protection against intravenous infection with influenza virus.
    Tsuru S; Fujisawa H; Taniguchi M; Zinnaka Y; Nomoto K
    J Gen Virol; 1987 Feb; 68 ( Pt 2)():419-24. PubMed ID: 3819695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spread and persistence of influenza viruses in normal and cyclophosphamide-treated mice.
    Abou-Donia H; Jennings R; Potter CW
    J Med Virol; 1981; 7(4):251-62. PubMed ID: 7334358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influenza in senescent mice: impaired cytotoxic T-lymphocyte activity is correlated with prolonged infection.
    Bender BS; Johnson MP; Small PA
    Immunology; 1991 Apr; 72(4):514-9. PubMed ID: 2037313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophils play an essential role in cooperation with antibody in both protection against and recovery from pulmonary infection with influenza virus in mice.
    Fujisawa H
    J Virol; 2008 Mar; 82(6):2772-83. PubMed ID: 18184718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective mechanisms against pulmonary infection with influenza virus. I. Relative contribution of polymorphonuclear leukocytes and of alveolar macrophages to protection during the early phase of intranasal infection.
    Fujisawa H; Tsuru S; Taniguchi M; Zinnaka Y; Nomoto K
    J Gen Virol; 1987 Feb; 68 ( Pt 2)():425-32. PubMed ID: 3819696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection.
    Quan FS; Compans RW; Cho YK; Kang SM
    Vaccine; 2007 Jan; 25(2):272-82. PubMed ID: 16945454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose dependence of CTL precursor frequency induced by a DNA vaccine and correlation with protective immunity against influenza virus challenge.
    Fu TM; Guan L; Friedman A; Schofield TL; Ulmer JB; Liu MA; Donnelly JJ
    J Immunol; 1999 Apr; 162(7):4163-70. PubMed ID: 10201942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory role of neutrophils on influenza virus multiplication in the lungs of mice.
    Fujisawa H
    Microbiol Immunol; 2001; 45(10):679-88. PubMed ID: 11762750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective immunity against influenza H5N1 virus challenge in mice by intranasal co-administration of baculovirus surface-displayed HA and recombinant CTB as an adjuvant.
    Prabakaran M; Velumani S; He F; Karuppannan AK; Geng GY; Yin LK; Kwang J
    Virology; 2008 Oct; 380(2):412-20. PubMed ID: 18786689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Administration of inactivated and detergent-treated influenza virus to mice before virus challenge reduces mortality.
    Arora DJ
    J Med Virol; 1993 Sep; 41(1):85-9. PubMed ID: 8228943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of viral growth, viral enzymatic activity, and antigenicity in murine lungs during the course of influenza pneumonia.
    Astry CL; Yolken RH; Jakab GJ
    J Med Virol; 1984; 14(2):81-90. PubMed ID: 6491644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection of mice against influenza virus infection: enhancement of nonspecific cellular responses by Corynebacterium parvum.
    Mak NK; Schiltknecht E; Ada GL
    Cell Immunol; 1983 Jun; 78(2):314-25. PubMed ID: 6861206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of live influenza vaccine donor strain derived from cold-adaptation of X-31 virus.
    Lee KH; Seo SU; Song JM; Lee CM; Kim HA; Seong BL
    Vaccine; 2006 Mar; 24(11):1966-74. PubMed ID: 16343703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory diseases in cyclophosphamide-treated mice. II. Decreased virulence of PR8 influenza virus.
    Singer SH; Noguchi P; Kirschstein RL
    Infect Immun; 1972 Jun; 5(6):957-60. PubMed ID: 4635505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterotypic protective immune reactions in mice infected with distinct serotypes of human influenza virus.
    Floc'h F; Werner GH
    Ann Microbiol (Paris); 1978; 129(4):509-24. PubMed ID: 308787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge.
    Galarza JM; Latham T; Cupo A
    Viral Immunol; 2005; 18(1):244-51. PubMed ID: 15802970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of long lasting persistence of influenza virus antigens at the portal of infection and in the spleen of mice.
    Dubrovina TYa ; Ivanova IA; Shidlovskaya NK; Polyak RYa
    Acta Virol; 1992 Oct; 36(5):450-8. PubMed ID: 1364021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection of mice against lethal infection with highly pathogenic H7N7 influenza A virus by using a recombinant low-pathogenicity vaccine strain.
    de Wit E; Munster VJ; Spronken MI; Bestebroer TM; Baas C; Beyer WE; Rimmelzwaan GF; Osterhaus AD; Fouchier RA
    J Virol; 2005 Oct; 79(19):12401-7. PubMed ID: 16160167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.