BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 13395544)

  • 1. Formation and utilization of octulose-8-phosphate by transaldolase and transketolase.
    RACKER E; SCHROEDER E
    Arch Biochem Biophys; 1957 Jan; 66(1):241-3. PubMed ID: 13395544
    [No Abstract]   [Full Text] [Related]  

  • 2. Octulose: a forgotten metabolite?
    Zhang Q; Bartels D
    J Exp Bot; 2017 Dec; 68(21-22):5689-5694. PubMed ID: 29140447
    [No Abstract]   [Full Text] [Related]  

  • 3. [GLUCIDE INTERCONVERSION REACTIONS IN MULTI-ENZYMATIC PREPARATIONS OF HUMAN PALATINE TONSIL. PRESENCE OF TRANSALDOLASE AND TRANSKETOLASE AND OF THE PROCESS OF HEPTOSE FORMATION].
    PALLESTRINI E; MANGIAROTTI M
    Arch Ital Otol Rinol Laringol; 1963; 74():244-57. PubMed ID: 14081596
    [No Abstract]   [Full Text] [Related]  

  • 4. THE COUPLED REACTION CATALYZED BY THE ENZYMES TRANSKETOLASE AND TRANSALDOLASE. II. REACTION OF ERYTHROSE 4-PHOSPHATE AND THE TRANSALDOLASE-DIHYDROXYACETONE COMPLEX.
    HORECKER BL; CHENG T; PONTREMOLI S
    J Biol Chem; 1963 Oct; 238():3428-31. PubMed ID: 14085398
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of transketolase and octulose in the resurrection plant Craterostigma plantagineum.
    Zhang Q; Linnemann TV; Schreiber L; Bartels D
    J Exp Bot; 2016 May; 67(11):3551-9. PubMed ID: 27129952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.
    Matsushika A; Goshima T; Fujii T; Inoue H; Sawayama S; Yano S
    Enzyme Microb Technol; 2012 Jun; 51(1):16-25. PubMed ID: 22579386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Formation of a pentose phosphate cycle metabolite, erythrose-4-phosphate, from initial compounds of glycolysis by transketolase from the rat liver].
    Stepanova NG; Demcheva MV
    Biokhimiia; 1987 Nov; 52(11):1907-13. PubMed ID: 3440115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of transketolase and transaldolase of the human hemolyzate by multivalent anions.
    DISCHE Z; IGALS D
    Arch Biochem Biophys; 1963 Jun; 101():489-93. PubMed ID: 14028047
    [No Abstract]   [Full Text] [Related]  

  • 9. [Nonoxidative heptoformation from glucose-6-phosphate in rabbit & rat kidney preparations].
    MISSALE G; MAIORCA R
    Boll Soc Ital Biol Sper; 1958 Sep; 34(17):1016-8. PubMed ID: 13584603
    [No Abstract]   [Full Text] [Related]  

  • 10. [Formation of nonphosphorylated sedoheptulose by the transaldolase reaction between fructose-6-phosphate and D-erythrose].
    PRANDINI BD; LOPES DO ROSARIO JA
    Boll Soc Ital Biol Sper; 1960 Nov; 36():1224-6. PubMed ID: 13737717
    [No Abstract]   [Full Text] [Related]  

  • 11. The path of carbon in photosynthesis. XXIII. The tentative identification of erythrose phosphate.
    MOSES V; CALVIN M
    Arch Biochem Biophys; 1958 Dec; 78(2):598-600. PubMed ID: 13618042
    [No Abstract]   [Full Text] [Related]  

  • 12. Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1) Activities in normal, neoplastic, differentiating, and regenerating liver.
    Heinrich PC; Morris HP; Weber G
    Cancer Res; 1976 Sep; 36(9 pt.1):3189-97. PubMed ID: 10080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The natural occurrence of sedoheptulose monophosphate in liver.
    NIGAM VN; SIE HG; FISHMAN WH
    J Biol Chem; 1959 Aug; 234(8):1955-7. PubMed ID: 13672995
    [No Abstract]   [Full Text] [Related]  

  • 14. Formation of sedoheptulose-7-phosphate from enzymatically obtained "active glycolic aldehyde" and ribose-5-phosphate with transketolase.
    PROCHOROFF NN; KATTERMANN R; HOLZER H
    Biochem Biophys Res Commun; 1962 Nov; 9():477-81. PubMed ID: 13986286
    [No Abstract]   [Full Text] [Related]  

  • 15. Exchange reactions catalyzed by group-transferring enzymes oppose the quantitation and the unravelling of the identify of the pentose pathway.
    Flanigan I; Collins JG; Arora KK; MacLeod JK; Williams JF
    Eur J Biochem; 1993 Apr; 213(1):477-85. PubMed ID: 8477719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of nucleoside to sedoheptulose monophosphate by rat liver.
    SIE HG; NIGAM VN; FISHMAN WH
    J Biol Chem; 1959 May; 234(5):1202-7. PubMed ID: 13654348
    [No Abstract]   [Full Text] [Related]  

  • 17. The enzymatic conversion of sedoheptulose-1, 7-diphosphate to shikimic acid.
    DAVIS BD; KALAN EB; SPRINSON DB; SRINIVASAN PR
    J Biol Chem; 1956 Dec; 223(2):913-20. PubMed ID: 13385239
    [No Abstract]   [Full Text] [Related]  

  • 18. [Effect of thyroxine and iodine-containing compounds on the transketolase and transaldolase activity in embryogenesis].
    Rachev RR; Kolotilova AI; Kudriavtseva GV; Redikh SV
    Probl Endokrinol (Mosk); 1974; 20(1):104-7. PubMed ID: 4848603
    [No Abstract]   [Full Text] [Related]  

  • 19. Metabolism of ribose-5-phosphate in hemolysates. III. Quantitative determination of sedoheptulose-7-phosphate and some properties of the transketolase of erythrocytes and blood serum.
    BRUNS FH; DUNWALD E; NOLTMANN E
    Biochem Z; 1958; 330(6):497-508. PubMed ID: 13596392
    [No Abstract]   [Full Text] [Related]  

  • 20. [The significance of the transaldolase and transketolase reactions (the Dickens and Horecker cycles) in human pathology].
    do ROSARIO J
    Gaz Med Port; 1960; 13():637-48. PubMed ID: 13743244
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.