These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 1340086)
1. Effect of small changes in extracellular magnesium concentration on the tone of feline mesenteric arteries: involvement of endothelium. Szabó C; Faragó M; Dóra E Acta Physiol Hung; 1992; 79(3):295-303. PubMed ID: 1340086 [TBL] [Abstract][Full Text] [Related]
2. Endothelium-dependent influence of small changes in extracellular magnesium concentration on the tone of feline middle cerebral arteries. Szabó C; Faragó M; Dóra E; Horváth I; Kovách AG Stroke; 1991 Jun; 22(6):785-9. PubMed ID: 2057979 [TBL] [Abstract][Full Text] [Related]
3. Influence of extracellular magnesium on the contractile and endothelium-dependent dilatory responses of feline mesenteric arteries. Szabó C; Faragó M; Dóra E; Horváth I; Kovách AG Acta Physiol Hung; 1991; 78(1):19-26. PubMed ID: 1763648 [TBL] [Abstract][Full Text] [Related]
4. Role of the L-arginine-nitric oxide pathway in the changes in cerebrovascular reactivity following hemorrhagic hypotension and retransfusion. Szabó C; Csáki C; Benyó Z; Reivich M; Kovách AG Circ Shock; 1992 Aug; 37(4):307-16. PubMed ID: 1446389 [TBL] [Abstract][Full Text] [Related]
5. Endothelial cells are required for inhibition of contractile responses induced by reduction in extracellular magnesium and sodium ions in rat aortic smooth muscle [corrected]. Zhang A; Altura BT; Altura BM Microcirc Endothelium Lymphatics; 1990 Dec; 6(6):427-35. PubMed ID: 1712066 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery. Ozkan MH; Uma S Life Sci; 2005 Nov; 78(1):14-21. PubMed ID: 16125203 [TBL] [Abstract][Full Text] [Related]
7. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries. Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278 [TBL] [Abstract][Full Text] [Related]
8. Endothelium dependence and gestational regulation of inhibition of vascular tone by magnesium sulfate in rat aorta. Longo M; Jain V; Vedernikov YP; Facchinetti F; Saade GR; Garfield RE Am J Obstet Gynecol; 2001 Apr; 184(5):971-8. PubMed ID: 11303207 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of endothelium-dependent relaxations by phorbol myristate acetate in canine coronary arteries: role of a pertussis toxin-sensitive G-protein. Flavahan NA; Shimokawa H; Vanhoutte PM J Pharmacol Exp Ther; 1991 Jan; 256(1):50-5. PubMed ID: 1899121 [TBL] [Abstract][Full Text] [Related]
10. Acetylcholine stimulates release of endothelium-derived relaxing factor in coronary arteries of human organ donors. Blaise GA; Stewart DJ; Guérard MJ Can J Cardiol; 1993 Nov; 9(9):813-20. PubMed ID: 8281481 [TBL] [Abstract][Full Text] [Related]
11. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography. McIntyre CA; Williams BC; Lindsay RM; McKnight JA; Hadoke PW Br J Pharmacol; 1998 Apr; 123(8):1555-60. PubMed ID: 9605561 [TBL] [Abstract][Full Text] [Related]
12. Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed. McCulloch AI; Randall MD Br J Pharmacol; 1998 Apr; 123(8):1700-6. PubMed ID: 9605578 [TBL] [Abstract][Full Text] [Related]
13. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y; Otsuka A; Tanaka H; Shigenobu K Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [TBL] [Abstract][Full Text] [Related]
14. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
15. Effects of extracellular pH on agonist-induced vascular tone of the cat ophthalmociliary artery. Su EN; Yu DY; Alder VA; Cringle SJ Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):998-1007. PubMed ID: 8125762 [TBL] [Abstract][Full Text] [Related]
16. Vascular actions of TA 3090, a novel analog of diltiazem: interaction with endothelium-dependent relaxation in canine femoral and coronary arteries. Rubanyi G; Iqbal A; Schwartz A; Vanhoutte PM J Pharmacol Exp Ther; 1991 Nov; 259(2):639-42. PubMed ID: 1941612 [TBL] [Abstract][Full Text] [Related]
17. Actions of 4-chloro-3-ethyl phenol on internal Ca2+ stores in vascular smooth muscle and endothelial cells. Low AM; Sormaz L; Kwan CY; Daniel EE Br J Pharmacol; 1997 Oct; 122(3):504-10. PubMed ID: 9351507 [TBL] [Abstract][Full Text] [Related]
18. Relaxatory effect of magnesium on mesenteric vascular beds differs from normal and streptozotocin induced diabetic rats. Soltani N; Keshavarz M; Sohanaki H; Zahedi Asl S; Dehpour AR Eur J Pharmacol; 2005 Jan; 508(1-3):177-81. PubMed ID: 15680269 [TBL] [Abstract][Full Text] [Related]
19. Interaction between extracellular magnesium and the passage of calcium through the sarcolemma during depolarization of isolated feline coronary and femoral arteries. Sjögren A; Edvinsson L Arch Int Pharmacodyn Ther; 1987 Sep; 289(1):129-39. PubMed ID: 2893595 [TBL] [Abstract][Full Text] [Related]