These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 134033)

  • 1. Coupling factors ATPases from photosynthetic bacteria.
    Melandri BA; Melandri AB
    J Bioenerg; 1976 Apr; 8(2):109-19. PubMed ID: 134033
    [No Abstract]   [Full Text] [Related]  

  • 2. Specificity of the transhydrogenase factor for chromatophores of Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Konings AW; Guillory RJ
    Biochim Biophys Acta; 1972 Nov; 283(2):334-8. PubMed ID: 4267407
    [No Abstract]   [Full Text] [Related]  

  • 3. Coupling factor adenosine-5'-triphosphatase from Rhodospirillum rubrum: a simple and rapid procedure for its purification.
    Lücke FK; Klemme JH
    Z Naturforsch C Biosci; 1976; 31(5-6):272-9. PubMed ID: 183408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the proton-translocating adenosine triphosphatase from chromatophores of photosynthetic bacteria by free bivalent cations and adenosine triphosphate [proceedings].
    Webster GD; Edwards PA; Jackson JB
    Biochem Soc Trans; 1977; 5(5):1527-9. PubMed ID: 144630
    [No Abstract]   [Full Text] [Related]  

  • 5. Coupling factor adenosine triphosphatase-complex of Rhodospirillum rubrum. Isolation of an oligomycin-sensitive Ca2+, Mg2+--ATPase.
    Oren R; Gromet-Elhanan Z
    FEBS Lett; 1977 Jul; 79(1):147-50. PubMed ID: 142656
    [No Abstract]   [Full Text] [Related]  

  • 6. Energy transduction in photosynthetic bacteria. IV. Light-dependent ATPase in photosynthetic membranes from Rhodopseudomonas capsulata.
    Melandri BA; Baccarini-Melandri A; Fabbri E
    Biochim Biophys Acta; 1972 Sep; 275(3):383-94. PubMed ID: 4262690
    [No Abstract]   [Full Text] [Related]  

  • 7. Orthophosphate requirement for the formation of phosphoenolpyruvate from pyruvate by enzyme preparations from photosynthetic bacteria.
    Buchanan BB
    J Bacteriol; 1974 Sep; 119(3):1066-8. PubMed ID: 4212219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribulose bisphosphate carboxylases from Chromatium vinosum and Rhodospirillum rubrum and their role in photosynthetic carbon assimilation.
    Akazawa T; Takabe T; Asami S; Kobayashi H
    Basic Life Sci; 1978; 11():209-26. PubMed ID: 106836
    [No Abstract]   [Full Text] [Related]  

  • 9. Interconversion of two kinetically distinct states of the membrane-bound and solubilised H+-translocating ATPase from Rhodospirillum rubrum.
    Webster GD; Edwards PA; Jackson JB
    FEBS Lett; 1977 Apr; 76(1):29-35. PubMed ID: 15868
    [No Abstract]   [Full Text] [Related]  

  • 10. Properties of adenosinetriphosphatase in chromatophores and in coupling factor from the photosynthetic bacteria Chromatium strain D.
    Gepshtein A; Carmeli C
    Eur J Biochem; 1974 May; 44(2):593-602. PubMed ID: 4275963
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular diversity of the ribulose-1,5-diphosphate carboxylase from photosynthetic microorganisms.
    Spomer GG
    Science; 1968 Aug; 161(3840):482-5. PubMed ID: 5659689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores.
    Slooten L; Sybesma C
    Biochim Biophys Acta; 1976 Dec; 449(3):565-80. PubMed ID: 11818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of the Ca2+-ATPase from rhodospirillum rubrum into a Mg2+-dependent enzyme by 1,N6-etheno ATP.
    Schäfer HJ; Müller HW; Dose K
    Biochem Biophys Res Commun; 1980 Aug; 95(3):1113-8. PubMed ID: 6448051
    [No Abstract]   [Full Text] [Related]  

  • 14. The control of the adenosine triphosphatase of Rhodospirillum rubrum chromatophores by divalent cations and the membrane high energy state.
    Edwards PA; Jackson JB
    Eur J Biochem; 1976 Feb; 62(1):7-14. PubMed ID: 129328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP synthesis catalyzed by the ATPase complex from Rhodospirillum rubrum reconstituted into phospholipid vesicles together with bacteriorhodopsin.
    Oren R; Weiss S; Garty H; Caplan SR; Gromet-Elhanan Z
    Arch Biochem Biophys; 1980 Dec; 205(2):503-9. PubMed ID: 6451197
    [No Abstract]   [Full Text] [Related]  

  • 16. Purification and properties of coupling factor (Ca2+-dependent adenosine triphosphatase) from Rhodospirillum rubrum.
    Johansson BC; Baltscheffsky M; Baltscheffsky H
    Eur J Biochem; 1973 Dec; 40(1):109-17. PubMed ID: 4272539
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of ferredoxin on bacterial photophosphorylation.
    Shanmugam KT; Arnon DI
    Biochim Biophys Acta; 1972 Feb; 256(2):487-97. PubMed ID: 4622736
    [No Abstract]   [Full Text] [Related]  

  • 18. Interaction of a coupling factor from Rhodospirillum rubrum with coupling factor deficient chromatophores.
    Pfluger UN; Dahl JS; Lutz HU; Bachofen R
    Arch Microbiol; 1975 Jun; 104(2):179-84. PubMed ID: 125569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Carbonic anhydrase activity of phototropic bacteria].
    Ivanovskiĭ RN; Rodova NA
    Mikrobiologiia; 1977; 46(3):409-13. PubMed ID: 408582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. F1-ATPase from Rhodopseudomonas blastica.
    Strid A; Nyrén P
    Acta Chem Scand (Cph); 1989 Nov; 43(10):1007-8. PubMed ID: 2535110
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.