These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 134035)
21. Control of the energy coupling modes in mitochondria by mercurials. Southard JH; Green DE Biochem Biophys Res Commun; 1974 Dec; 61(4):1310-6. PubMed ID: 4477015 [No Abstract] [Full Text] [Related]
22. Crystal violet as an uncoupler of oxidative phosphorylation in rat liver mitochondria. Moreno SN; Gadelha FR; Docampo R J Biol Chem; 1988 Sep; 263(25):12493-9. PubMed ID: 2970460 [TBL] [Abstract][Full Text] [Related]
23. Involvement of oxygen free radicals in the respiratory uncoupling induced by free calcium and ADP-magnesium in isolated cardiac mitochondria: comparing reoxygenation in cultured cardiomyocytes. Meynier A; Razik H; Cordelet C; Grégoire S; Demaison L Mol Cell Biochem; 2003 Jan; 243(1-2):55-64. PubMed ID: 12619889 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of respiration in submitochondrial particles by N,N'-dicyclohexylcarbodiimide: the effect of sodium, potassium, and antibiotics which alter membrane permeability. Beyer RE; Brinker KR; Crankshaw DL Can J Biochem; 1969 Feb; 47(2):117-24. PubMed ID: 4304574 [No Abstract] [Full Text] [Related]
25. Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. II. The beef heart mitochondrial system. Harris DA; Radda GK; Slater EC Biochim Biophys Acta; 1977 Mar; 459(3):560-72. PubMed ID: 139163 [TBL] [Abstract][Full Text] [Related]
26. Study of the mitochondrial phosphate carrier in the course of calcium phosphate accumulation: a requirement for Mg2+ and ADP of its sensitivity to thiol reagents. Leblanc P; Clauser H Biochim Biophys Acta; 1974 May; 347(2):193-201. PubMed ID: 4407157 [No Abstract] [Full Text] [Related]
27. Mitochondria uncoupling effect of halothane dependent on magnesium. Rzeczycki W; Valdivia E Biochem Biophys Res Commun; 1973 May; 52(1):270-5. PubMed ID: 4268186 [No Abstract] [Full Text] [Related]
28. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria. Wikström MK Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077 [No Abstract] [Full Text] [Related]
29. Reversal of impaired oxidative phosphorylation and calcium overloading in the skeletal muscle mitochondria of CHF-146 dystrophic hamsters. Bhattacharya SK; Johnson PL; Thakar JH Mol Chem Neuropathol; 1998 May; 34(1):53-77. PubMed ID: 9778646 [TBL] [Abstract][Full Text] [Related]
30. Effect of phospholipases on the structure and function of mitochondria. Burstein C; Loyter A; Racker E J Biol Chem; 1971 Jun; 246(12):4075-82. PubMed ID: 4104710 [No Abstract] [Full Text] [Related]
31. Effects of amyl ester of unsubstituted rhodamine on respiration and Ca2+ transport in rat liver mitochondria. Krasnikov BF; Avad AS; Zorov DB; Yaguzhinsky LS Biochem Biophys Res Commun; 1991 Mar; 175(3):1010-6. PubMed ID: 1709008 [TBL] [Abstract][Full Text] [Related]
32. Effect of ruthenium red on oxidative phosphorylation and the calcium and magnesium content of skeletal muscle mitochondria of normal and BIO 14.6 dystrophic hamsters. Thakar JH; Wrogemann K; Blanchaer MC Biochim Biophys Acta; 1973 Jul; 314(1):8-14. PubMed ID: 4741598 [No Abstract] [Full Text] [Related]
33. Calcium and magnesium ATPases of the spectrin fraction of human erythrocytes. Kirkpatrick FH; Woods GM; La Celle PL; Weed RI J Supramol Struct; 1975; 3(5-6):415-25. PubMed ID: 128659 [TBL] [Abstract][Full Text] [Related]
34. Studies of the energy-transfer system of submitochondrial particles. 2. Effects of oligomycin and aurovertin. Lee C; Ernster L Eur J Biochem; 1968 Feb; 3(4):391-400. PubMed ID: 4296030 [No Abstract] [Full Text] [Related]
35. Effect of ruthenium red on the Ca2+ and Sr2+ efflux from rat liver mitochondria: influence of nupercaine. Pezzi L Biosci Rep; 1984 Mar; 4(3):231-7. PubMed ID: 6202338 [TBL] [Abstract][Full Text] [Related]
36. The substitution of calcium for magnesium in H+,K+-ATPase catalytic cycle. Evidence for two actions of divalent cations. Mendlein J; Sachs G J Biol Chem; 1989 Nov; 264(31):18512-9. PubMed ID: 2553712 [TBL] [Abstract][Full Text] [Related]
37. The pathway of inorganic-phosphate efflux from isolated liver mitochondria during adenosine triphosphate hydrolysis. Tyler DD Biochem J; 1980 Dec; 192(3):821-8. PubMed ID: 6453587 [TBL] [Abstract][Full Text] [Related]
38. Transport mechanism for succinate and phosphate localized in the plasma membrane of bovine spermatozoa. Babcock DF; First NL; Lardy HA J Biol Chem; 1975 Aug; 250(16):6488-95. PubMed ID: 808544 [TBL] [Abstract][Full Text] [Related]
39. [The effect of Ca(2+)-induced opening of cyclosporine-sensitive pore on the oxygen consumption and functional state of rat liver mitochondria]. Akopova OV; Nosar' VI; Man'kovskaia IN; Sagach VF Ukr Biokhim Zh (1999); 2013; 85(5):37-49. PubMed ID: 24479321 [TBL] [Abstract][Full Text] [Related]