These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1341216)

  • 21. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation.
    Chandran KB; Lee CS; Chen LD
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S65-75; discussion S75-6. PubMed ID: 8061871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cavitation damage of pyrolytic carbon in mechanical heart valves.
    Kafesjian R; Howanec M; Ward GD; Diep L; Wagstaff LS; Rhee R
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S2-7. PubMed ID: 8061867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic and visual characteristics of cavitation induced by mechanical heart valves.
    Sohn K; Manning KB; Fontaine AA; Tarbell JM; Deutsch S
    J Heart Valve Dis; 2005 Jul; 14(4):551-8. PubMed ID: 16116884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transient pressure at closing of a monoleaflet mechanical heart valve prosthesis: mounting compliance effect.
    Wu ZJ; Gao BZ; Hwang NH
    J Heart Valve Dis; 1995 Sep; 4(5):553-67. PubMed ID: 8581200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves.
    Carey RF; Porter JM; Richard G; Luck C; Shu MC; Guo GX; Elizondo DR; Kingsbury C; Anderson S; Herman BA
    J Heart Valve Dis; 1995 Sep; 4(5):532-9; discussion 539-41. PubMed ID: 8581198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrodynamic comparison of biological prostheses during progressive valve calcification in a simulated exercise situation. An in vitro study.
    Bakhtiary F; Dzemali O; Steinseiffer U; Schmitz C; Glasmacher B; Moritz A; Kleine P
    Eur J Cardiothorac Surg; 2008 Nov; 34(5):960-3. PubMed ID: 18774723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro testing of heart valve wear outside of the manufacturers laboratory--requirements and controversies.
    Reul H; Eichler M; Potthast K; Schmitz C; Rau G
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S97-103; discussion 103-4. PubMed ID: 8803761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development, manufacturing and validation of a single-leaflet mechanical heart valve prosthesis.
    Reul H; Steinseifer U; Knoch M; Rau G
    J Heart Valve Dis; 1995 Sep; 4(5):513-9. PubMed ID: 8581195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occluder closing behavior: a key factor in mechanical heart valve cavitation.
    Wu ZJ; Wang Y; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S25-33; discussion S33-4. PubMed ID: 8061868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of cavitation bubbles in monoleaflet mechanical heart valves.
    Lee H; Tsukiya T; Homma A; Kamimura T; Takewa Y; Tatsumi E; Taenaka Y; Takano H; Kitamura S
    J Artif Organs; 2004; 7(3):121-7. PubMed ID: 15558332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of cavitation on pyrolytic carbon in vitro.
    Haubold AD; Ely JL; Chahine GL
    J Heart Valve Dis; 1994 May; 3(3):318-23. PubMed ID: 8087272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An examination of two retrieved long-term human implant Björk-Shiley valves.
    More RB
    Med Prog Technol; 1994; 20(3-4):195-200. PubMed ID: 7877565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation.
    Chandran KB; Aluri S
    Ann Biomed Eng; 1997; 25(6):926-38. PubMed ID: 9395039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New laboratory technique measures projected dynamic area of prosthetic heart valves.
    Scotten LN; Walker DK
    J Heart Valve Dis; 2004 Jan; 13(1):120-32; discussion 132-3. PubMed ID: 14765850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asynchronous closure and leaflet impact velocity of bileaflet mechanical heart valves.
    Wu ZJ; Hwang NH
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S38-49. PubMed ID: 8581210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
    Makhijani VB; Yang HQ; Singhal AK; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S35-44; discussion S44-8. PubMed ID: 8061869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaling of mechanical heart valves for cavitation inception: observation and acoustic detection.
    Chahine GL
    J Heart Valve Dis; 1996 Mar; 5(2):207-14; discussion 214-5. PubMed ID: 8665016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism for cavitation in the mechanical heart valve with an artificial heart: nuclei and viscosity dependence.
    Lee H; Taenaka Y; Kitamura S
    Artif Organs; 2005 Jan; 29(1):41-6. PubMed ID: 15644082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.