These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1341216)

  • 41. A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage.
    Manning KB; Herbertson LH; Fontaine AA; Deutsch S
    J Biomech Eng; 2008 Aug; 130(4):041001. PubMed ID: 18601443
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel study of mechanical heart valve cavitation in a pressurized pulsatile duplicator.
    Wu C; Retta SM; Robinson RA; Herman BA; Grossman LW
    ASAIO J; 2009; 55(5):445-51. PubMed ID: 19701083
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A protocol for the evaluation of the cavitation potential of mechanical heart valves.
    Herman BA; Carey RF
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S128-30; discussion S130-2. PubMed ID: 8061866
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of mechanical heart valve cavitation in an electro-hydraulic total artificial heart.
    Lee H; Taenaka Y; Kitamura S
    Artif Organs; 2006 Jan; 30(1):16-23. PubMed ID: 16409393
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Small aortic annulus: the hydrodynamic performances of 5 commercially available tissue valves.
    Gerosa G; Tarzia V; Rizzoli G; Bottio T
    J Thorac Cardiovasc Surg; 2006 May; 131(5):1058-64. PubMed ID: 16678590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrodynamic characteristics of bileaflet mechanical heart valves in an artificial heart: cavitation and closing velocity.
    Lee H; Homma A; Taenaka Y
    Artif Organs; 2007 Jul; 31(7):532-7. PubMed ID: 17584477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel pulse duplicator system: evaluation of different valve prostheses.
    Haaf P; Steiner M; Attmann T; Pfister G; Cremer J; Lutter G
    Thorac Cardiovasc Surg; 2009 Feb; 57(1):10-7. PubMed ID: 19169990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In-vivo prediction of cavitation near a Medtronic Hall valve.
    Johansen P; Andersen TS; Hasenkam JM; Nygaard H
    J Heart Valve Dis; 2004 Jul; 13(4):651-8. PubMed ID: 15311874
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prosthetic valves or tissue valves--a vote for mechanical prostheses.
    Horstkotte D
    Z Kardiol; 1985; 74 Suppl 6():19-37. PubMed ID: 4096074
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
    He Z; Xi B; Zhu K; Hwang NH
    J Heart Valve Dis; 2001 Sep; 10(5):666-74. PubMed ID: 11603607
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of dissolved carbon dioxide on cavitation intensity in mechanical heart valves.
    Herbertson LH; Manning KB; Reddy V; Fontaine AA; Tarbell JM; Deutsch S
    J Heart Valve Dis; 2005 Nov; 14(6):835-42. PubMed ID: 16363068
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Numerical study of squeeze-flow in tilting disc mechanical heart valves.
    Makhijani VB; Siegel JM; Hwang NH
    J Heart Valve Dis; 1996 Jan; 5(1):97-103. PubMed ID: 8834732
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wavelet transforms in the analysis of mechanical heart valve cavitation.
    Herbertson LH; Reddy V; Manning KB; Welz JP; Fontaine AA; Deutsch S
    J Biomech Eng; 2006 Apr; 128(2):217-22. PubMed ID: 16524333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An in-vitro technique for assessment of thrombogenicity in mechanical prosthetic cardiac valves: evaluation with a range of valve types.
    Martin AJ; Christy JR
    J Heart Valve Dis; 2004 May; 13(3):509-20. PubMed ID: 15222300
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flow through a defective mechanical heart valve: a steady flow analysis.
    Smadi O; Fenech M; Hassan I; Kadem L
    Med Eng Phys; 2009 Apr; 31(3):295-305. PubMed ID: 18707915
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tubular heart valves: a new tissue prosthesis design--preclinical evaluation of the 3F aortic bioprosthesis.
    Cox JL; Ad N; Myers K; Gharib M; Quijano RC
    J Thorac Cardiovasc Surg; 2005 Aug; 130(2):520-7. PubMed ID: 16077422
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thrombogenic evaluation of two mechanical heart valve prostheses using a new in-vitro test system.
    Kim CH; Steinseifer U; Schmitz-Rode T
    J Heart Valve Dis; 2009 Mar; 18(2):207-13. PubMed ID: 19455896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characteristic resistance curves of aortic valve substitutes facilitate individualized decision for a particular type.
    Kuehnel RU; Puchner R; Pohl A; Wendt MO; Hartrumpf M; Pohl M; Albes JM
    Eur J Cardiothorac Surg; 2005 Mar; 27(3):450-5; discussion 455. PubMed ID: 15740954
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the hemodynamics of several prosthetic heart valves: in vitro study.
    Modi VJ; Akutsu T
    Monogr Atheroscler; 1990; 15():125-37. PubMed ID: 2296238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.