These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 13416173)

  • 1. Reductive degradation of pyrimidines. I. The isolation and characterization of a uracil fermenting bacterium, Clostridium uracilicum nov. spec.
    CAMPBELL LL
    J Bacteriol; 1957 Feb; 73(2):220-4. PubMed ID: 13416173
    [No Abstract]   [Full Text] [Related]  

  • 2. Reductive degradation of pyrimidines. II. Mechanism of uracil degradation by Clostridium uracilicum.
    CAMPBELL LL
    J Bacteriol; 1957 Feb; 73(2):225-9. PubMed ID: 13416174
    [No Abstract]   [Full Text] [Related]  

  • 3. Characterization of an orotic acid fermenting bacterium, zymobacterium oroticum, nov. gen., nov. spec.
    WACHSMAN JT; BARKER HA
    J Bacteriol; 1954 Oct; 68(4):400-4. PubMed ID: 13201543
    [No Abstract]   [Full Text] [Related]  

  • 4. Reductive degradation of pyrimidines. IV. Purification and properties of dihydrouracil hydrase.
    CAMPBELL LL
    J Biol Chem; 1958 Nov; 233(5):1236-40. PubMed ID: 13598769
    [No Abstract]   [Full Text] [Related]  

  • 5. The metabolism of pyrimidines by proteolytic clostridia.
    Hilton MG
    Arch Microbiol; 1975; 102(2):145-9. PubMed ID: 235246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ferredoxin-dependent dihydropyrimidine dehydrogenase in Clostridium chromiireducens.
    Wang F; Wei Y; Lu Q; Ang EL; Zhao H; Zhang Y
    Biosci Rep; 2020 Jul; 40(7):. PubMed ID: 32614053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Capacity of Clostridium felsineum and Plectridium pectinovorum, the agents responsible for flax wetting, of fermenting pectin in various concentrations of various nitrogen compounds].
    ALEKSEEV VA
    Mikrobiologiia; 1956; 25(3):327-30. PubMed ID: 13369179
    [No Abstract]   [Full Text] [Related]  

  • 8. SUCROSE-FERMENTING STRAINS OF CLOSTRIDIUM SEPTICUM.
    WIJEWANTA EA
    Nature; 1963 Jul; 199():300-1. PubMed ID: 14076707
    [No Abstract]   [Full Text] [Related]  

  • 9. The characteristics of lactate-fermenting sporeforming anaerobes from silage.
    BRYANT MP; BURKEY LA
    J Bacteriol; 1956 Jan; 71(1):43-6. PubMed ID: 13286228
    [No Abstract]   [Full Text] [Related]  

  • 10. A maltose-fermenting variant of Clostridium hemolyticum.
    CLAUS KD; MATSUOKA T; SMITH LD
    J Bacteriol; 1956 Dec; 72(6):809-12. PubMed ID: 13398368
    [No Abstract]   [Full Text] [Related]  

  • 11. Characteristics of Tartrate-fermenting Species of Clostridium.
    Tabachnick J; Vaughn RH
    J Bacteriol; 1948 Oct; 56(4):435-43. PubMed ID: 16561592
    [No Abstract]   [Full Text] [Related]  

  • 12. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov.
    Kaur S; Yawar M; Kumar PA; Suresh K
    Int J Syst Evol Microbiol; 2014 Mar; 64(Pt 3):710-718. PubMed ID: 24186873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor.
    Patil Y; Junghare M; Pester M; Müller N; Schink B
    Int J Syst Evol Microbiol; 2015 Oct; 65(10):3289-3296. PubMed ID: 26297346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester.
    Yang JC; Chynoweth DP; Williams DS; Li A
    Int J Syst Bacteriol; 1990 Jul; 40(3):268-72. PubMed ID: 2397194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridium lacto-acetophilum Nov. Spec. and the Role of Acetic Acid in the Butyric Acid Fermentation of Lactate.
    Bhat JV; Barker HA
    J Bacteriol; 1947 Sep; 54(3):381-91. PubMed ID: 16561372
    [No Abstract]   [Full Text] [Related]  

  • 16. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors.
    Detman A; Mielecki D; Chojnacka A; Salamon A; Błaszczyk MK; Sikora A
    Microb Cell Fact; 2019 Feb; 18(1):36. PubMed ID: 30760264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerofilum pentosovorans gen. nov., sp. nov., and Anaerofilum agile sp. nov., two new, strictly anaerobic, mesophilic, acidogenic bacteria from anaerobic bioreactors.
    Zellner G; Stackebrandt E; Nagel D; Messner P; Weiss N; Winter J
    Int J Syst Bacteriol; 1996 Oct; 46(4):871-5. PubMed ID: 8863411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species.
    Ueki A; Ohtaki Y; Kaku N; Ueki K
    Int J Syst Evol Microbiol; 2016 Sep; 66(8):2936-2943. PubMed ID: 27126251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation of ethylene glycol by Clostridium glycolicum, sp. n.
    GASTON LW; STADTMAN ER
    J Bacteriol; 1963 Feb; 85(2):356-62. PubMed ID: 13946772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Culture and Physiology of a Thermophilic Cellulose-fermenting Bacterium.
    McBee RH
    J Bacteriol; 1948 Nov; 56(5):653-63. PubMed ID: 16561615
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.