These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 13416343)

  • 1. Kinetic studies of pigment synthesis by non-sulfur purple bacteria.
    COHEN-BAZIRE G; SISTROM WR; STANIER RY
    J Cell Comp Physiol; 1957 Feb; 49(1):25-68. PubMed ID: 13416343
    [No Abstract]   [Full Text] [Related]  

  • 2. The carotenoids of photosynthetic bacteria. II. The carotenoids of a number of non-sulphur purple photosynthetic bacteria (Athiorhodiaceae).
    GOODWIN TW
    Arch Mikrobiol; 1956; 24(4):313-22. PubMed ID: 13340832
    [No Abstract]   [Full Text] [Related]  

  • 3. [Pigment system of purple bacteria and role of bacterial pigments in photosynthesis].
    MAKSIMOVA IV
    Usp Sovrem Biol; 1958; 45(1):14-27. PubMed ID: 13557273
    [No Abstract]   [Full Text] [Related]  

  • 4. The carotenoids of photosynthetic bacteria. I. The nature of the carotenoid pigments in a halophilic photosynthetic sulphur bacterium (chromatium spp.).
    GOODWIN TW; LAND DG
    Arch Mikrobiol; 1956; 24(3):305-12. PubMed ID: 13340831
    [No Abstract]   [Full Text] [Related]  

  • 5. [Are "giant" chlorosomes part of light-harvesting antennae of the photosynthetic apparatus in green bacteria?].
    Borisov AIu
    Biofizika; 2009; 54(3):434-41. PubMed ID: 19569502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparative study of B890 pigment-lipoprotein complexes from sulfur (Chromatium minutissimum) and non-sulfur (Rhodopseudomonas palustris) purple photosynthesizing bacteria].
    Erokhin IuE; Chugunov VA; Makhneva ZK; Agrikova IM; Vasil'ev BG
    Biokhimiia; 1978; 43(4):669-77. PubMed ID: 207362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparative study of light-harvesting complexes of purple photosynthetic bacteria Chromatium minutissimum and Rhodopseudomonas palustris].
    Erokhin IuE; Chugunov VA; Makhneva ZK; Agrikova IM; Shanturova TV
    Biokhimiia; 1977 Oct; 42(10):1817-24. PubMed ID: 922068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress on pigment-protein complexes from anoxygenic phototrophic bacteria--a review].
    Yang S; Cui X; Yue H; Guo S; Zhao L; Zhao J; Zhao C; Qu Y
    Wei Sheng Wu Xue Bao; 2009 Sep; 49(9):1146-51. PubMed ID: 20030050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Theory of energy resonance migration in pigment complexes of photosynthesizing organisms].
    Borisov AIu
    Biofizika; 1967; 12(4):630-6. PubMed ID: 5622222
    [No Abstract]   [Full Text] [Related]  

  • 10. Indigo- and indirubin-producing strains of Proteus and Psychrobacter are associated with purple rind defect in a surface-ripened cheese.
    Kamelamela N; Zalesne M; Morimoto J; Robbat A; Wolfe BE
    Food Microbiol; 2018 Dec; 76():543-552. PubMed ID: 30166186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Reconstruction of the function of membrane potential formation by isolated pigment-protein complexes of Rhodospirillum rubrum].
    Barskiĭ EL; Kondrashin AA; Samuilov VD; Skulachev VP
    Biokhimiia; 1976 Mar; 41(3):513-9. PubMed ID: 819043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brown pigment gallstones: the role of bacterial hydrolases and another missed opportunity.
    Ostrow JD
    Hepatology; 1991 Mar; 13(3):607-9. PubMed ID: 1999329
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of purple sulfur bacteria from the South Andros Black Hole cave system: highlights taxonomic problems for ecological studies among the genera Allochromatium and Thiocapsa.
    Herbert RA; Ranchou-Peyruse A; Duran R; Guyoneaud R; Schwabe S
    Environ Microbiol; 2005 Aug; 7(8):1260-8. PubMed ID: 16011763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Siderochrome and iron metabolism in microorganisms].
    Knüsel F; Nüesch J; Treichler HJ
    Naturwissenschaften; 1967 May; 54(10):242-7. PubMed ID: 4869506
    [No Abstract]   [Full Text] [Related]  

  • 15. A soil bacterium producing an unusual blue pigment.
    HUGO WB; TURNER M
    J Bacteriol; 1957 Feb; 73(2):154-7. PubMed ID: 13416163
    [No Abstract]   [Full Text] [Related]  

  • 16. Bacteria morphology and diversity of the combined autotrophic nitritation and sulfur-carbon three-dimensional-electrode denitrification process.
    Wang H; Zhou Y; Yuan Q; Zhao H; Dai X
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(1):39-51. PubMed ID: 24117082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of sulfate-reducing bacteria with sulfur as electron acceptor.
    Biebl H; Pfennig
    Arch Microbiol; 1977 Feb; 112(1):115-7. PubMed ID: 843165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Assessment on the Physiological State of Purple and Green Sulfur Bacteria through the Analyses of Pigment and 5S rRNA Content.
    Casamayor EO; Mas J; Pedrós-Alió C
    Microb Ecol; 2001 Oct; 42(3):427-437. PubMed ID: 12024267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats.
    D'Amelio ED; Cohen Y; Des Marais DJ
    Arch Microbiol; 1987; 147():213-20. PubMed ID: 11542090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria.
    Higuchi-Takeuchi M; Morisaki K; Toyooka K; Numata K
    PLoS One; 2016; 11(8):e0160981. PubMed ID: 27513570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.