These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 13426512)

  • 1. Radiographic observation of the electrode position during stereoencephalotomy.
    SPIEGEL EA; WYCIS HT; HENNY GC; STAUFFER HM; GOODE R
    Br J Radiol; 1957 May; 30(353):278-80. PubMed ID: 13426512
    [No Abstract]   [Full Text] [Related]  

  • 2. Guideline thirteen: guidelines for standard electrode position nomenclature. American Electroencephalographic Society.
    J Clin Neurophysiol; 1994 Jan; 11(1):111-3. PubMed ID: 8195414
    [No Abstract]   [Full Text] [Related]  

  • 3. Coregistration of digital photography of the human cortex and cranial magnetic resonance imaging for visualization of subdural electrodes in epilepsy surgery.
    Mahvash M; König R; Wellmer J; Urbach H; Meyer B; Schaller K
    Neurosurgery; 2007 Nov; 61(5 Suppl 2):340-4; discussion 344-5. PubMed ID: 18091249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of brain shift on intraoperative neurophysiological monitoring with cortical strip electrodes.
    Suess O; Kombos T; Ciklatekerlio O; Stendel R; Suess S; Brock M
    Acta Neurochir (Wien); 2002 Dec; 144(12):1279-89; discussion 1289. PubMed ID: 12478339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phantom and animal study of temperature changes during fMRI with intracerebral depth electrodes.
    Ciumas C; Schaefers G; Bouvard S; Tailhades E; Perrin E; Comte JC; Canet-Soulas E; Bonnet C; Ibarrola D; Polo G; Moya J; Beuf O; Ryvlin P
    Epilepsy Res; 2014 Jan; 108(1):57-65. PubMed ID: 24246144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronavigation and fluoroscopy-assisted subdural strip electrode positioning: a simple method to increase intraoperative accuracy of strip localization in epilepsy surgery.
    Erõss L; Bagó AG; Entz L; Fabó D; Halász P; Balogh A; Fedorcsák I
    J Neurosurg; 2009 Feb; 110(2):327-31. PubMed ID: 19012488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A MEMS-based flexible multichannel ECoG-electrode array.
    Rubehn B; Bosman C; Oostenveld R; Fries P; Stieglitz T
    J Neural Eng; 2009 Jun; 6(3):036003. PubMed ID: 19436080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What is the optimal anodal electrode position for inducing corticomotor excitability changes in transcranial direct current stimulation?
    Lee M; Kim YH; Im CH; Kim JH; Park CH; Chang WH; Lee A
    Neurosci Lett; 2015 Jan; 584():347-50. PubMed ID: 25450146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parasagittal transinsular electrodes for stereo-EEG in temporal and insular lobe epilepsies.
    Robles SG; Gelisse P; El Fertit H; Tancu C; Duffau H; Crespel A; Coubes P
    Stereotact Funct Neurosurg; 2009; 87(6):368-78. PubMed ID: 19844136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ECT and seizure threshold: effects of stimulus wave form and electrode placement.
    Weiner RD
    Biol Psychiatry; 1980 Apr; 15(2):225-41. PubMed ID: 7417613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electrographic registration of metabolic changes in the cerebral cortex evoked by sensory stimuli].
    Shvets TB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(1):134-43. PubMed ID: 1210665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical electrode localization from X-rays and simple mapping for electrocorticographic research: The "Location on Cortex" (LOC) package for MATLAB.
    Miller KJ; Makeig S; Hebb AO; Rao RP; denNijs M; Ojemann JG
    J Neurosci Methods; 2007 May; 162(1-2):303-8. PubMed ID: 17343918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrode system for chronic recording of direct cortical response.
    Sato T
    Nihon Seirigaku Zasshi; 1970 Dec; 32(12):824-5. PubMed ID: 5533842
    [No Abstract]   [Full Text] [Related]  

  • 15. An in vitro and in vivo analysis of anodized tantalum capacitive electrodes: corrosion response, physiology, and histology.
    Johnson PF; Bernstein JJ; Hunter G; Dawson WW; Hench LL
    J Biomed Mater Res; 1977 Sep; 11(5):637-56. PubMed ID: 893487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulcal and ventricular trajectories in stereotactic surgery.
    Elias WJ; Sansur CA; Frysinger RC
    J Neurosurg; 2009 Feb; 110(2):201-7. PubMed ID: 18821828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electrode cap on measured cortical motor threshold.
    Julkunen P; Säisänen L; Sarasti M; Könönen M
    J Neurosci Methods; 2009 Jan; 176(2):225-9. PubMed ID: 18801386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A multichannel cortical electrode for recording the neuronal impulse activity of the human cerebral cortex].
    Gurchin FA; Kropotov IuD; Ponomarev VA; Sevost'ianov AV
    Fiziol Cheloveka; 1989; 15(4):174-6. PubMed ID: 2583392
    [No Abstract]   [Full Text] [Related]  

  • 20. Computational modeling of epidural cortical stimulation.
    Wongsarnpigoon A; Grill WM
    J Neural Eng; 2008 Dec; 5(4):443-54. PubMed ID: 19015584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.