These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 1342927)
21. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Near TJ; Pesavento JJ; Cheng CH Mol Phylogenet Evol; 2004 Sep; 32(3):881-91. PubMed ID: 15288063 [TBL] [Abstract][Full Text] [Related]
22. Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas. Ortí G; Petry P; Porto JI; Jégu M; Meyer A J Mol Evol; 1996 Feb; 42(2):169-82. PubMed ID: 8919869 [TBL] [Abstract][Full Text] [Related]
23. Complete mitochondrial genome of the bullhead torrent catfish, Liobagrus obesus (Siluriformes, Amblycipididae): Genome description and phylogenetic considerations inferred from the Cyt b and 16S rRNA genes. Kartavtsev YP; Jung SO; Lee YM; Byeon HK; Lee JS Gene; 2007 Jul; 396(1):13-27. PubMed ID: 17434693 [TBL] [Abstract][Full Text] [Related]
24. Monophyly of the order Rodentia inferred from mitochondrial DNA sequences of the genes for 12S rRNA, 16S rRNA, and tRNA-valine. Frye MS; Hedges SB Mol Biol Evol; 1995 Jan; 12(1):168-76. PubMed ID: 7877492 [TBL] [Abstract][Full Text] [Related]
25. Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the Hymenoptera--a lineage with both rapidly and slowly evolving mitochondrial genomes. Dowton M; Cameron SL; Austin AD; Whiting MF Mol Phylogenet Evol; 2009 Aug; 52(2):512-9. PubMed ID: 19364540 [TBL] [Abstract][Full Text] [Related]
26. [Molecular phylogeny of some species of the acridoidea based on 16S rDNA]. Yin H; Zhang DC; Bi ZL; Yin Z; Liu Y; Yin XC Yi Chuan Xue Bao; 2003 Aug; 30(8):766-72. PubMed ID: 14682247 [TBL] [Abstract][Full Text] [Related]
27. Higher-level phylogeny of the Hymenoptera inferred from mitochondrial genomes. Mao M; Gibson T; Dowton M Mol Phylogenet Evol; 2015 Mar; 84():34-43. PubMed ID: 25542648 [TBL] [Abstract][Full Text] [Related]
28. Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction. Dowton M; Castro LR; Campbell SL; Bargon SD; Austin AD J Mol Evol; 2003 May; 56(5):517-26. PubMed ID: 12698290 [TBL] [Abstract][Full Text] [Related]
29. Molecular phylogenetic study of Tephritidae (Insecta: Diptera) using partial sequences of the mitochondrial 16S ribosomal DNA. Han HY; McPheron BA Mol Phylogenet Evol; 1997 Feb; 7(1):17-32. PubMed ID: 9007017 [TBL] [Abstract][Full Text] [Related]
30. Molecular phylogeny of a circum-global, diverse gastropod superfamily (Cerithioidea: Mollusca: Caenogastropoda): pushing the deepest phylogenetic limits of mitochondrial LSU rDNA sequences. Lydeard C; Holznagel WE; Glaubrecht M; Ponder WF Mol Phylogenet Evol; 2002 Mar; 22(3):399-406. PubMed ID: 11884164 [TBL] [Abstract][Full Text] [Related]
31. Molecular systematics of cytochrome oxidase I and 16S from Neochlamisus leaf beetles and the importance of sampling. Funk DJ Mol Biol Evol; 1999 Jan; 16(1):67-82. PubMed ID: 10331253 [TBL] [Abstract][Full Text] [Related]
32. Phylogenetic analysis of southern hemisphere flat oysters based on partial mitochondrial 16S rDNA gene sequences. Jozefowicz CJ; Foighil DO Mol Phylogenet Evol; 1998 Dec; 10(3):426-35. PubMed ID: 10051395 [TBL] [Abstract][Full Text] [Related]
33. RNA polymerase beta subunit (rpoB) gene and the 16S-23S rRNA intergenic transcribed spacer region (ITS) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family Mycoplasmataceae. Volokhov DV; Simonyan V; Davidson MK; Chizhikov VE Mol Phylogenet Evol; 2012 Jan; 62(1):515-28. PubMed ID: 22115576 [TBL] [Abstract][Full Text] [Related]
34. The radiation of characiform fishes and the limits of resolution of mitochondrial ribosomal DNA sequences. Ortí G; Meyer A Syst Biol; 1997 Mar; 46(1):75-100. PubMed ID: 11975355 [TBL] [Abstract][Full Text] [Related]
35. Mitochondrial genome of the Levant Region honeybee, Apis mellifera syriaca (Hymenoptera: Apidae). Haddad NJ Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Nov; 27(6):4067-4068. PubMed ID: 25633178 [TBL] [Abstract][Full Text] [Related]
36. Phylogenetic relationships in rhinonyssid mites (Acari: Rhinonyssidae) based on mitochondrial 16S rDNA sequences. De Rojas M; Mora MD; Ubeda JM; Cutillas C; Navajas M; Guevara DC Exp Appl Acarol; 2001; 25(12):957-67. PubMed ID: 12465850 [TBL] [Abstract][Full Text] [Related]
37. Testing the validity of Northern European species in the Chrysis ignita species group (Hymenoptera: Chrysididae) with DNA barcoding. Soon V; Budrys E; Orlovskytė S; Paukkunen J; Odegaard F; Ljubomirov T; Saarma U Zootaxa; 2014 Apr; 3786():301-30. PubMed ID: 24869539 [TBL] [Abstract][Full Text] [Related]
38. Molecular characterization of closely related species in the parasitic genus Encarsia (Hymenoptera: Aphelinidae) based on the mitochondrial cytochrome oxidase subunit I gene. Monti MM; Nappo AG; Giorgini M Bull Entomol Res; 2005 Oct; 95(5):401-8. PubMed ID: 16197560 [TBL] [Abstract][Full Text] [Related]
39. Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Miya M; Nishida M Mol Phylogenet Evol; 2000 Dec; 17(3):437-55. PubMed ID: 11133198 [TBL] [Abstract][Full Text] [Related]
40. The complete mitochondrial DNA sequence of the basal hexapod Tetrodontophora bielanensis: evidence for heteroplasmy and tRNA translocations. Nardi F; Carapelli A; Fanciulli PP; Dallai R; Frati F Mol Biol Evol; 2001 Jul; 18(7):1293-304. PubMed ID: 11420368 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]