These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1342927)

  • 41. Extensive gene rearrangements in the mitochondrial genomes of two egg parasitoids, Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae).
    Chen L; Chen PY; Xue XF; Hua HQ; Li YX; Zhang F; Wei SJ
    Sci Rep; 2018 May; 8(1):7034. PubMed ID: 29728615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.
    Samuels AK; Weisrock DW; Smith JJ; France KJ; Walker JA; Putta S; Voss SR
    Gene; 2005 Apr; 349():43-53. PubMed ID: 15780978
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular phylogeny of Calyptratae (Diptera: Brachycera): the evolution of 18S and 16S ribosomal rDNAs in higher dipterans and their use in phylogenetic inference.
    Nirmala X; Hypsa V; Zurovec M
    Insect Mol Biol; 2001 Oct; 10(5):475-85. PubMed ID: 11881812
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular phylogeny of Vespidae (Hymenoptera) and the evolution of sociality in wasps.
    Schmitz J; Moritz RF
    Mol Phylogenet Evol; 1998 Apr; 9(2):183-91. PubMed ID: 9562978
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A phylogeny of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) inferred from mitochondrial NADH 1 dehydrogenase gene sequence.
    Smith PT; Kambhampati S; Völkl W; Mackauer M
    Mol Phylogenet Evol; 1999 Mar; 11(2):236-45. PubMed ID: 10191068
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.
    Whiting MF; Carpenter JC; Wheeler QD; Wheeler WC
    Syst Biol; 1997 Mar; 46(1):1-68. PubMed ID: 11975347
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effectiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order (Orthoptera).
    Flook PK; Rowell CH
    Mol Phylogenet Evol; 1997 Oct; 8(2):177-92. PubMed ID: 9299223
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phylogeny and historical biogeography of the loliginid squids (Mollusca: cephalopoda) based on mitochondrial DNA sequence data.
    Anderson FE
    Mol Phylogenet Evol; 2000 May; 15(2):191-214. PubMed ID: 10837151
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contrasting rates of mitochondrial molecular evolution in parasitic Diptera and Hymenoptera.
    Castro LR; Austin AD; Dowton M
    Mol Biol Evol; 2002 Jul; 19(7):1100-13. PubMed ID: 12082129
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families.
    Macey JR; Schulte JA; Larson A; Tuniyev BS; Orlov N; Papenfuss TJ
    Mol Phylogenet Evol; 1999 Aug; 12(3):250-72. PubMed ID: 10413621
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mitochondrial phylogenomics of the Hymenoptera.
    Tang P; Zhu JC; Zheng BY; Wei SJ; Sharkey M; Chen XX; Vogler AP
    Mol Phylogenet Evol; 2019 Feb; 131():8-18. PubMed ID: 30399430
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The major opsin in bees (Insecta: Hymenoptera): A promising nuclear gene for higher level phylogenetics.
    Mardulyn P; Cameron SA
    Mol Phylogenet Evol; 1999 Jul; 12(2):168-76. PubMed ID: 10381319
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple nuclear-gene phylogenies: application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny.
    Slade RW; Moritz C; Heideman A
    Mol Biol Evol; 1994 May; 11(3):341-56. PubMed ID: 8015430
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The first mitogenomes of the superfamily Pamphilioidea (Hymenoptera: Symphyta): Mitogenome architecture and phylogenetic inference.
    Niu G; Korkmaz EM; Doğan Ö; Zhang Y; Aydemir MN; Budak M; Du S; Başıbüyük HH; Wei M
    Int J Biol Macromol; 2019 Mar; 124():185-199. PubMed ID: 30448489
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial DNA rates and biogeography in European newts (genus Euproctus).
    Caccone A; Milinkovitch MC; Sbordoni V; Powell JR
    Syst Biol; 1997 Mar; 46(1):126-44. PubMed ID: 11975350
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diagnostic genetic markers and evolutionary relationships among invasive dreissenoid and corbiculoid bivalves in North America: phylogenetic signal from mitochondrial 16S rDNA.
    Stepien CA; Hubers AN; Skidmore JL
    Mol Phylogenet Evol; 1999 Oct; 13(1):31-49. PubMed ID: 10508537
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phylogenetic analysis of the South American electric fishes (order Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data.
    Alves-Gomes JA; Ortí G; Haygood M; Heiligenberg W; Meyer A
    Mol Biol Evol; 1995 Mar; 12(2):298-318. PubMed ID: 7700155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod.
    Rocha-Olivares A; Fleeger JW; Foltz DW
    Mol Biol Evol; 2001 Jun; 18(6):1088-102. PubMed ID: 11371597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia).
    Douzery E; Catzeflis FM
    J Mol Evol; 1995 Nov; 41(5):622-36. PubMed ID: 7490777
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phylogenetic relationships of amphibian families inferred from DNA sequences of mitochondrial 12S and 16S ribosomal RNA genes.
    Hay JM; Ruvinsky I; Hedges SB; Maxson LR
    Mol Biol Evol; 1995 Sep; 12(5):928-37. PubMed ID: 7476139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.