These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1343589)

  • 1. Charge movement and Ca2+ release in normal and dysgenic foetal myotubes.
    Shimahara T; Bournaud R; Inoue I; Strube C
    J Physiol Paris; 1992; 86(1-3):117-21. PubMed ID: 1343589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramembrane charge movement in developing skeletal muscle cells from fetal mice.
    Strube C; Bournaud R; Inoue I; Shimahara T
    Pflugers Arch; 1992 Sep; 421(6):572-7. PubMed ID: 1437518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced intramembrane charge movement in the dysgenic skeletal muscle cell.
    Shimahara T; Bournaud R; Inoue I; Strube C
    Pflugers Arch; 1990 Sep; 417(1):111-3. PubMed ID: 1963490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous expression of BI Ca2+ channels in dysgenic skeletal muscle.
    Adams BA; Mori Y; Kim MS; Tanabe T; Beam KG
    J Gen Physiol; 1994 Nov; 104(5):985-96. PubMed ID: 7876830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors.
    García J; Tanabe T; Beam KG
    J Gen Physiol; 1994 Jan; 103(1):125-47. PubMed ID: 8169595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for dysfunction in the regulation of cytosolic Ca2+ in excitation-contraction uncoupled dysgenic muscle.
    Klaus MM; Scordilis SP; Rapalus JM; Briggs RT; Powell JA
    Dev Biol; 1983 Sep; 99(1):152-65. PubMed ID: 6617998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro.
    Flucher BE; Andrews SB; Fleischer S; Marks AR; Caswell A; Powell JA
    J Cell Biol; 1993 Dec; 123(5):1161-74. PubMed ID: 8245124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractions of dysgenic skeletal muscle triggered by a potentiated, endogenous calcium current.
    Adams BA; Beam KG
    J Gen Physiol; 1991 Apr; 97(4):687-96. PubMed ID: 1711572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of SR33557 on intramembrane charge movement in normal and 'muscular dysgenesis' mouse skeletal muscle cells.
    Strube C; Shimahara T; Bournaud R
    Eur J Neurosci; 1995 Jan; 7(1):41-4. PubMed ID: 7711935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nifedipine-sensitive intramembrane charge movement in Purkinje cells from mouse cerebellum.
    Melliti K; Bournaud R; Bastide B; Shimahara T
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):363-72. PubMed ID: 8821135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Barium currents in developing skeletal muscle cells of normal and mutant mice foetuses with 'muscular dysgenesis'.
    Shimahara T; Bournaud R
    Cell Calcium; 1991 Nov; 12(10):727-33. PubMed ID: 1663002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ entry through acetylcholine receptor channel in dysgenic myotubes.
    Melliti K; Bournaud R; Shimahara T
    Arch Physiol Biochem; 1996; 104(1):57-61. PubMed ID: 8724881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis.
    Knudson CM; Chaudhari N; Sharp AH; Powell JA; Beam KG; Campbell KP
    J Biol Chem; 1989 Jan; 264(3):1345-8. PubMed ID: 2536362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric intramembrane charge movement in mouse hippocampal pyramidal cells.
    Chameau P; Bournaud R; Shimahara T
    Neurosci Lett; 1995 Dec; 201(2):159-62. PubMed ID: 8848242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinated development of myofibrils, sarcoplasmic reticulum and transverse tubules in normal and dysgenic mouse skeletal muscle, in vivo and in vitro.
    Flucher BE; Phillips JL; Powell JA; Andrews SB; Daniels MP
    Dev Biol; 1992 Apr; 150(2):266-80. PubMed ID: 1551475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramembrane charge movement and sarcoplasmic calcium release in enzymatically isolated mammalian skeletal muscle fibres.
    Szentesi P; Jacquemond V; Kovács L; Csernoch L
    J Physiol; 1997 Dec; 505 ( Pt 2)(Pt 2):371-84. PubMed ID: 9423180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling.
    Brum G; Fitts R; Pizarro G; Ríos E
    J Physiol; 1988 Apr; 398():475-505. PubMed ID: 3260626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium current activation and charge movement in denervated mammalian skeletal muscle fibres.
    Delbono O
    J Physiol; 1992; 451():187-203. PubMed ID: 1328616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tagging with green fluorescent protein reveals a distinct subcellular distribution of L-type and non-L-type Ca2+ channels expressed in dysgenic myotubes.
    Grabner M; Dirksen RT; Beam KG
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1903-8. PubMed ID: 9465115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation-contraction coupling.
    Dirksen RT; Beam KG
    J Gen Physiol; 1999 Sep; 114(3):393-403. PubMed ID: 10469729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.