These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 13436504)

  • 1. L-ribulokinase and the formation of D-xylulose phosphate in Lactobacillus pentosus.
    BURMA DP; HORECKER BL
    Biochim Biophys Acta; 1957 Jun; 24(3):660-1. PubMed ID: 13436504
    [No Abstract]   [Full Text] [Related]  

  • 2. The purification of phosphoketopentoepimerase from Lactobacillus pentosus and the preparation of xylulose 5-phosphate.
    HORECKER BL; HURWITZ J
    J Biol Chem; 1956 Dec; 223(2):993-1008. PubMed ID: 13385247
    [No Abstract]   [Full Text] [Related]  

  • 3. Enzymatic formation of xylulose 5-phosphate from ribose 5-phosphate in spleen.
    ASHWELL G; HICKMAN J
    J Biol Chem; 1957 May; 226(1):65-76. PubMed ID: 13428737
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of xylulose 5-phosphate in xylose metabolism of Lactobacillus pentosus.
    STUMPF PK; HORECKER BL
    J Biol Chem; 1956 Feb; 218(2):753-68. PubMed ID: 13295228
    [No Abstract]   [Full Text] [Related]  

  • 5. Pentose fermentation by Lactobacillus plantarum. III. Ribulokinase.
    BURMA DP; HORECKER BL
    J Biol Chem; 1958 Apr; 231(2):1039-51. PubMed ID: 13539035
    [No Abstract]   [Full Text] [Related]  

  • 6. Conversion of D-xylose to D-xylulose in extracts of Lactobacillus pentosus.
    MITSUHASHI S; LAMPEN JO
    J Biol Chem; 1953 Oct; 204(2):1011-8. PubMed ID: 13117877
    [No Abstract]   [Full Text] [Related]  

  • 7. Flavokinase of Lactobacillus arabinosus 17.5.
    SNOSWELL AM
    Aust J Exp Biol Med Sci; 1957 Oct; 35(5):427-36. PubMed ID: 13499166
    [No Abstract]   [Full Text] [Related]  

  • 8. The role of xylulose 5-phosphate in the transketolase reaction.
    HORECKER BL; HURWITZ J; SMYRNIOTIS PZ
    J Biol Chem; 1956 Dec; 223(2):1009-19. PubMed ID: 13385248
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation of ribose phosphate from xylose by extracts of Lactobacillus pentosus.
    LAMPEN JO
    J Biol Chem; 1953 Oct; 204(2):999-1010. PubMed ID: 13117876
    [No Abstract]   [Full Text] [Related]  

  • 10. L-Xylulokinase and L-xylulose 5-phosphate-L-robulose 5-phosphate 3-epimerase in Aero-bacter aerogenes.
    ANDERSON RL; WOOD WA
    Biochim Biophys Acta; 1960 Aug; 42():374-6. PubMed ID: 14448336
    [No Abstract]   [Full Text] [Related]  

  • 11. Enzymic formation of L-xylulose from beeta-keto-L-gulonic acid.
    WINKELMAN J; ASHWELL G
    Biochim Biophys Acta; 1961 Sep; 52():170-5. PubMed ID: 14007506
    [No Abstract]   [Full Text] [Related]  

  • 12. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001.
    Johansson B; Hahn-Hägerdal B
    FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonparticipation of inorganic phosphate in the enzymic formation of nucleotides by nucleoside phosphotransferases.
    TUNIS M; CHARGAFF E
    Arch Biochem Biophys; 1957 Jul; 69():295-9. PubMed ID: 13445202
    [No Abstract]   [Full Text] [Related]  

  • 14. Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase.
    HEATH EC; HURWITZ J; HORECKER BL; GINSBURG A
    J Biol Chem; 1958 Apr; 231(2):1009-29. PubMed ID: 13539033
    [No Abstract]   [Full Text] [Related]  

  • 15. Biosynthesis of D-xylulose 5-phosphate from D-xylose and polyphosphate through a minimized two-enzyme cascade.
    Kim JE; Zhang YH
    Biotechnol Bioeng; 2016 Feb; 113(2):275-82. PubMed ID: 26241217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanisms of xylose utilization by Pseudomonas fluorescens: overlapping genetic responses to xylose, xylulose, ribose and mannitol.
    Liu Y; Rainey PB; Zhang XX
    Mol Microbiol; 2015 Oct; 98(3):553-70. PubMed ID: 26194109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals.
    Cam Y; Alkim C; Trichez D; Trebosc V; Vax A; Bartolo F; Besse P; François JM; Walther T
    ACS Synth Biol; 2016 Jul; 5(7):607-18. PubMed ID: 26186096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate transfer to myofibrils by ATP-creatine transphosphorylase.
    YAGI K; NODA L
    Biochim Biophys Acta; 1960 Sep; 43():249-59. PubMed ID: 13787047
    [No Abstract]   [Full Text] [Related]  

  • 19. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.
    Chomvong K; Bauer S; Benjamin DI; Li X; Nomura DK; Cate JH
    PLoS One; 2016; 11(6):e0158111. PubMed ID: 27336308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.