These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 13445203)

  • 1. The reductive pentose phosphate cycle. I. Phosphoribulokinase and ribulose diphosphate carboxylase.
    RACKER E
    Arch Biochem Biophys; 1957 Jul; 69():300-10. PubMed ID: 13445203
    [No Abstract]   [Full Text] [Related]  

  • 2. Ribulose 1,5-diphosphate carboxylase and Cholorobium thiosulfatophilum.
    Buchanan BB; Sirevåg R
    Arch Microbiol; 1976 Aug; 109(1-2):15-9. PubMed ID: 183616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The association of ribulose-1,5-bisphosphate carboxylase with phosphoriboisomerase and phosphoribulokinase.
    Sainis JK; Harris GC
    Biochem Biophys Res Commun; 1986 Sep; 139(3):947-54. PubMed ID: 3021158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6.
    Ivanovsky RN; Fal YI; Berg IA; Ugolkova NV; Krasilnikova EN; Keppen OI; Zakharchuc LM; Zyakun AM
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1743-1748. PubMed ID: 10439413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional properties of a multi-enzyme complex from spinach chloroplasts. 1. Stoichiometry of the polypeptide chains.
    Rault M; Giudici-Orticoni MT; Gontero B; Ricard J
    Eur J Biochem; 1993 Nov; 217(3):1065-73. PubMed ID: 8223630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes and genes of microbial autotrophy.
    Codd GA; Vakeria D
    Microbiol Sci; 1987 May; 4(5):154-9. PubMed ID: 2856385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth of Rhodobacter sphaeroides.
    Hallenbeck PL; Lerchen R; Hessler P; Kaplan S
    J Bacteriol; 1990 Apr; 172(4):1749-61. PubMed ID: 2156801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization and mapping of CO2 fixation genes within two gene clusters in Rhodobacter sphaeroides.
    Gibson JL; Tabita FR
    J Bacteriol; 1988 May; 170(5):2153-8. PubMed ID: 2834328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Regulation: A Master Role for Ribulose-1,5-Bisphosphate in One-Carbon Assimilation.
    Bringel F; Vuilleumier S
    Curr Biol; 2017 Oct; 27(20):R1127-R1129. PubMed ID: 29065298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MECHANISM OF THE CARBOXYDISMUTASE REACTION. II. CARBOXYLATION OF THE ENZYME.
    AKOYUNOGLOU G; CALVIN M
    Biochem Z; 1963; 338():20-30. PubMed ID: 14087294
    [No Abstract]   [Full Text] [Related]  

  • 11. Organization of phosphoribulokinase and ribulose bisphosphate carboxylase/oxygenase genes in Rhodopseudomonas (Rhodobacter) sphaeroides.
    Gibson JL; Tabita FR
    J Bacteriol; 1987 Aug; 169(8):3685-90. PubMed ID: 3038848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea.
    Kono T; Mehrotra S; Endo C; Kizu N; Matusda M; Kimura H; Mizohata E; Inoue T; Hasunuma T; Yokota A; Matsumura H; Ashida H
    Nat Commun; 2017 Jan; 8():14007. PubMed ID: 28082747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional five-enzyme complex of chloroplasts involved in the Calvin cycle.
    Gontero B; Cárdenas ML; Ricard J
    Eur J Biochem; 1988 Apr; 173(2):437-43. PubMed ID: 2834208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channeling of the intermediates and catalytic facilitation to Rubisco in a multienzyme complex of Calvin cycle enzymes.
    Sainis JK; Jawali N
    Indian J Biochem Biophys; 1994 Aug; 31(4):215-20. PubMed ID: 8002001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria.
    Dijkhuizen L; Harder W
    Antonie Van Leeuwenhoek; 1984; 50(5-6):473-87. PubMed ID: 6099093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the kinetic properties of ribulose bisphosphate carboxylase in chloroplast extracts of spinach, sunflower and four other reductive pentose phosphate-pathway species.
    Delaney ME; Walker DA
    Biochem J; 1978 May; 171(2):477-82. PubMed ID: 656056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the regulatory significance of inhibitors acting on non-equilibrium enzymes in the Calvin photosynthesis cycle.
    Pettersson G; Ryde-Pettersson U
    Eur J Biochem; 1989 Jun; 182(2):373-7. PubMed ID: 2544426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the reductive carboxylic acid cycle in a photosynthetic bacterium lacking ribulose I,5-diphosphate carboxylase.
    Buchanan BB; Schürmann P; Shanmugam KT
    Biochim Biophys Acta; 1972; 283(1):136-45. PubMed ID: 4643350
    [No Abstract]   [Full Text] [Related]  

  • 19. Emergence of new regulatory mechanisms in the Benson-Calvin pathway via protein-protein interactions: a glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase complex.
    Graciet E; Lebreton S; Gontero B
    J Exp Bot; 2004 May; 55(400):1245-54. PubMed ID: 15047759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering towards the enhancement of photosynthesis.
    Peterhansel C; Niessen M; Kebeish RM
    Photochem Photobiol; 2008; 84(6):1317-23. PubMed ID: 18764897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.