These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 1345001)
1. Aminoguanidine inhibits the modification of proteins by lipid peroxidation derived aldehydes: a possible antiatherogenic agent. Requena JR; Vidal P; Cabezas-Cerrato J Diabetes Res; 1992; 20(1):43-9. PubMed ID: 1345001 [TBL] [Abstract][Full Text] [Related]
2. Paradoxical protective effect of aminoguanidine toward low-density lipoprotein oxidation: inhibition of apolipoprotein B fragmentation without preventing its carbonylation. Mechanism of action of aminoguanidine. Jedidi I; Thérond P; Zarev S; Cosson C; Couturier M; Massot C; Jore D; Gardès-Albert M; Legrand A; Bonnefont-Rousselot D Biochemistry; 2003 Sep; 42(38):11356-65. PubMed ID: 14503886 [TBL] [Abstract][Full Text] [Related]
3. Apolipoprotein B carbonyl formation is enhanced by lipid peroxidation during copper-mediated oxidation of human low-density lipoproteins. Yan LJ; Lodge JK; Traber MG; Packer L Arch Biochem Biophys; 1997 Mar; 339(1):165-71. PubMed ID: 9056246 [TBL] [Abstract][Full Text] [Related]
4. A critical assessment of the effects of aminoguanidine and ascorbate on the oxidative modification of LDL: evidence for interference with some assays of lipoprotein oxidation by aminoguanidine. Scaccini C; Chiesa G; Jialal I J Lipid Res; 1994 Jun; 35(6):1085-92. PubMed ID: 8077847 [TBL] [Abstract][Full Text] [Related]
5. Oxidative and malondialdehyde modification of low-density lipoprotein: a comparative study. Chen Y; Zhou M; Liu S; Ding Z; Lou N; Pang Z; Wan J Br J Biomed Sci; 1997 Sep; 54(3):159-65. PubMed ID: 9499592 [TBL] [Abstract][Full Text] [Related]
6. Aminoguanidine inhibits oxidative modification of low density lipoprotein protein and the subsequent increase in uptake by macrophage scavenger receptors. Picard S; Parthasarathy S; Fruebis J; Witztum JL Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6876-80. PubMed ID: 1495978 [TBL] [Abstract][Full Text] [Related]
7. Hemoglobin induced apolipoprotein B crosslinking in low-density lipoprotein peroxidation. Miller YI; Felikman Y; Shaklai N Arch Biochem Biophys; 1996 Feb; 326(2):252-60. PubMed ID: 8611031 [TBL] [Abstract][Full Text] [Related]
8. Site-specific trapping of reactive species in low-density lipoprotein oxidation: biological implications. Kalyanaraman B; Joseph J; Parthasarathy S Biochim Biophys Acta; 1993 Jun; 1168(2):220-7. PubMed ID: 8389205 [TBL] [Abstract][Full Text] [Related]
9. Effect of desialylation on low density lipoproteins: comparative study before and after oxidative stress. Dousset N; Dousset JC; Taus M; Ferretti G; Curatola G; Soléra ML; Valdiguié P Biochem Mol Biol Int; 1994 Mar; 32(3):555-63. PubMed ID: 8032323 [TBL] [Abstract][Full Text] [Related]
10. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins. Hazell LJ; Davies MJ; Stocker R Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584 [TBL] [Abstract][Full Text] [Related]
11. [Effect of Huajiao volatile oil on Cu2+ -induced oxidative modification of low density lipoprotein in vitro]. Ma JY; Shi YK; Fang DZ Sichuan Da Xue Xue Bao Yi Xue Ban; 2006 Jan; 37(1):63-5. PubMed ID: 16468644 [TBL] [Abstract][Full Text] [Related]
12. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. Holvoet P; Perez G; Zhao Z; Brouwers E; Bernar H; Collen D J Clin Invest; 1995 Jun; 95(6):2611-9. PubMed ID: 7769103 [TBL] [Abstract][Full Text] [Related]
13. [Role of lipoprotein bound copper ions in lipid peroxidation of low and high density lipoproteins]. Vakhrusheva TV; Dremina ES; Sharov VS; Azizova OA Biofizika; 1997; 42(3):662-70. PubMed ID: 9296625 [TBL] [Abstract][Full Text] [Related]
14. Ginkgo biloba extract (EGb 761) protects human low density lipoproteins against oxidative modification mediated by copper. Yan LJ; Droy-Lefaix MT; Packer L Biochem Biophys Res Commun; 1995 Jul; 212(2):360-6. PubMed ID: 7626049 [TBL] [Abstract][Full Text] [Related]
15. The mechanism of apolipoprotein B-100 thiol depletion during oxidative modification of low-density lipoprotein. Ferguson E; Singh RJ; Hogg N; Kalyanaraman B Arch Biochem Biophys; 1997 May; 341(2):287-94. PubMed ID: 9169017 [TBL] [Abstract][Full Text] [Related]
16. Human low density lipoprotein as a target of hypochlorite generated by myeloperoxidase. Jerlich A; Fabjan JS; Tschabuschnig S; Smirnova AV; Horakova L; Hayn M; Auer H; Guttenberger H; Leis HJ; Tatzber F; Waeg G; Schaur RJ Free Radic Biol Med; 1998 May; 24(7-8):1139-48. PubMed ID: 9626568 [TBL] [Abstract][Full Text] [Related]
18. Glycation and glycoxidation of low-density lipoproteins by glucose and low-molecular mass aldehydes. Formation of modified and oxidized particles. Knott HM; Brown BE; Davies MJ; Dean RT Eur J Biochem; 2003 Sep; 270(17):3572-82. PubMed ID: 12919321 [TBL] [Abstract][Full Text] [Related]
19. Protection of endogenous vitamin E and beta-carotene by aminoguanidine upon oxidation of human low-density lipoproteins by *OH/O(2)*-. Lisfi D; Bonnefont-Rousselot D; Fernet M; Jore D; Delattre J; Gardès-Albert M Radiat Res; 2000 May; 153(5 Pt 1):497-507. PubMed ID: 10790269 [TBL] [Abstract][Full Text] [Related]
20. Kavalactones, a novel class of protein glycation and lipid peroxidation inhibitors. Upadhyay A; Tuenter E; Ahmad R; Amin A; Exarchou V; Apers S; Hermans N; Pieters L Planta Med; 2014 Aug; 80(12):1001-8. PubMed ID: 25098935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]