BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 13451617)

  • 1. Formation of erythrose-4-phosphate and acetyl phosphate by a phosphorolytic cleavage of fructose-6-phosphate.
    RACKER SM
    Nature; 1957 Jun; 179(4574):1349-50. PubMed ID: 13451617
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum.
    SCHRAMM M; KLYBAS V; RACKER E
    J Biol Chem; 1958 Dec; 233(6):1283-8. PubMed ID: 13610828
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanisms in the interconversion of ribose 5-phosphate and hexose 6-phosphate in human hemolyzates. II. Erythrose 4-phosphate as intermediate and rate regulator in the interconversion of ribose 5-phosphate and hexose 6-phosphate.
    DISCHE Z; IGALS D
    Arch Biochem Biophys; 1961 May; 93():201-10. PubMed ID: 13723069
    [No Abstract]   [Full Text] [Related]  

  • 4. [Formation of nonphosphorylated sedoheptulose by the transaldolase reaction between fructose-6-phosphate and D-erythrose].
    PRANDINI BD; LOPES DO ROSARIO JA
    Boll Soc Ital Biol Sper; 1960 Nov; 36():1224-6. PubMed ID: 13737717
    [No Abstract]   [Full Text] [Related]  

  • 5. Hexose phosphate metabolism by Acetobacter melanogenum.
    KATZNELSON H
    Can J Microbiol; 1958 Feb; 4(1):25-34. PubMed ID: 13500266
    [No Abstract]   [Full Text] [Related]  

  • 6. [Pentose phosphate biosynthesis in cardiac muscle (source of erythrose-4-phosphate formation)].
    Stepanova NG; Severin SE
    Dokl Akad Nauk SSSR; 1980; 251(5):1271-4. PubMed ID: 6446451
    [No Abstract]   [Full Text] [Related]  

  • 7. Formation of unequally labeled fructose 6-phosphate by an exchange reaction catalyzed by transaldolase.
    LJUNGDAHL L; WOOD HG; RACKER E; COURI D
    J Biol Chem; 1961 Jun; 236():1622-5. PubMed ID: 13762870
    [No Abstract]   [Full Text] [Related]  

  • 8. Transketolase-catalyzed utilization of fructose 6-phosphate and its significance in a glucose 6-phosphate oxidation cycle.
    RACKER E; DE LA HABA G; LEDER IG
    Arch Biochem Biophys; 1954 Jan; 48(1):238-40. PubMed ID: 13125597
    [No Abstract]   [Full Text] [Related]  

  • 9. The conversion of phosphoenolpyruvic acid and D-erythrose-4-phosphate to 5-de-hydroquinic acid.
    SRINIVASAN PR; KATAGIRI M; SPRINSON DB
    J Biol Chem; 1959 Apr; 234(4):713-5. PubMed ID: 13654248
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolism of fructose-1,6-diphosphate and acetate in Acetobacter suboxydans.
    KITOS PA; KING TE; CHELDELIN VH
    J Bacteriol; 1957 Nov; 74(5):565-71. PubMed ID: 13480992
    [No Abstract]   [Full Text] [Related]  

  • 11. Labeling of the active site of aldolase with glyceraldehyde 3-phosphate and erythrose 4-phosphate.
    Lai CY; Martinez-de Dretz G; Bacila M; Marinello E; Horecker BL
    Biochem Biophys Res Commun; 1968 Mar; 30(6):665-72. PubMed ID: 5642383
    [No Abstract]   [Full Text] [Related]  

  • 12. D-erythrose 2-phosphate, a new sugar phosphate.
    HAIN WF; LEVY LW; LORING HS; MOSS LK
    Arch Biochem Biophys; 1956 Dec; 65(2):578-80. PubMed ID: 13395515
    [No Abstract]   [Full Text] [Related]  

  • 13. The histochemical dephosphorylation of certain sugar phosphates, alpha-naphthohydroquinone diphosphate and two chalcone diphosphates.
    BOURNE GH
    Acta Anat (Basel); 1954; 22(4):289-300. PubMed ID: 14349523
    [No Abstract]   [Full Text] [Related]  

  • 14. Binding of sorbitol 6-phosphate and of fructose 1-phosphate to the regulatory protein of liver glucokinase.
    Vandercammen A; Detheux M; Van Schaftingen E
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):253-6. PubMed ID: 1520277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An enyzmic method for the analysis of D-erythrose 4-phosphate.
    Paoletti F; Williams JF; Horecker BL
    Anal Biochem; 1979 May; 95(1):250-3. PubMed ID: 158992
    [No Abstract]   [Full Text] [Related]  

  • 16. N-Acetylmannosamine-6-phosphate and N-acetylneuraminic acid-9-phosphate as intermediates in sialic acid biosynthesis.
    WARREN L; FELSENFELD H
    Biochem Biophys Res Commun; 1961 Jun; 5():185-90. PubMed ID: 13783222
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolism of fructose-3-phosphate in the diabetic rat lens.
    Lal S; Szwergold BS; Taylor AH; Randall WC; Kappler F; Wells-Knecht K; Baynes JW; Brown TR
    Arch Biochem Biophys; 1995 Apr; 318(1):191-9. PubMed ID: 7726561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. USE OF COMMERCIALLY AVAILABLE PREPARATIONS OF FRUCTOSE 6-PHOSPHATE IN THE DETERMINATION OF PHOSPHOHEXOSE ISOMERASE ACTIVITY.
    SCHWARTZ MK; BODANSKY O
    Anal Biochem; 1965 Apr; 11():48-53. PubMed ID: 14328645
    [No Abstract]   [Full Text] [Related]  

  • 19. THE COUPLED REACTION CATALYZED BY THE ENZYMES TRANSKETOLASE AND TRANSALDOLASE. II. REACTION OF ERYTHROSE 4-PHOSPHATE AND THE TRANSALDOLASE-DIHYDROXYACETONE COMPLEX.
    HORECKER BL; CHENG T; PONTREMOLI S
    J Biol Chem; 1963 Oct; 238():3428-31. PubMed ID: 14085398
    [No Abstract]   [Full Text] [Related]  

  • 20. [On the fate of fructose-1, 6-diphosphate and fructose-6-phosphate introduced into the animal organism].
    KUZNETSOV AA; STEPANENKO BN
    Biokhimiia; 1960; 25():705-15. PubMed ID: 13755491
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.