These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 13454802)

  • 21. Effect of low frequency pulsed magnetic field on gravitropic response and cell elongation in coleoptiles of maize seedlings.
    Kościarz-Grzesiok A; Sieroń-Stołtny K; Polak M; Sieroń A; Karcz W
    Gen Physiol Biophys; 2016 Oct; 35(4):417-424. PubMed ID: 27447398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.
    Kriechbaumer V; Seo H; Park WJ; Hawes C
    J Exp Bot; 2015 Sep; 66(19):6009-20. PubMed ID: 26139824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fusicoccin- and IAA-induced elongation growth share the same pattern of K+ dependence.
    Tode K; Lüthen H
    J Exp Bot; 2001 Feb; 52(355):251-5. PubMed ID: 11283169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What remains of the Cholodny-Went theory? It's alive and well in maize.
    Briggs WR
    Plant Cell Environ; 1992 Sep; 15(7):763. PubMed ID: 11541802
    [No Abstract]   [Full Text] [Related]  

  • 25. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl.
    Jones AM; Cochran DS; Lamerson PM; Evans ML; Cohen JD
    Plant Physiol; 1991; 97(1):352-8. PubMed ID: 11538374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis.
    Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T
    Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Movement of pulses of labeled auxin in corn coleoptiles.
    Goldsmith MH
    Plant Physiol; 1967 Feb; 42(2):258-63. PubMed ID: 6040894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auxin and gibberellin-like substances synthesis by Fusarium isolates pathogenic to corn seedlings.
    Mańka M
    Acta Microbiol Pol; 1980; 29(4):365-74. PubMed ID: 6164256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of cations on hormone transport in primary roots of Zea mays.
    Hasenstein KH; Evans ML
    Plant Physiol; 1988; 86(3):890-4. PubMed ID: 11538240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms.
    Cheung SP; Cleland RE
    Plant Cell Physiol; 1991; 32(7):1015-9. PubMed ID: 11537170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin.
    Haga K; Takano M; Neumann R; Iino M
    Plant Cell; 2005 Jan; 17(1):103-15. PubMed ID: 15598797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The calcium dependence of auxin action in roots.
    Evans ML; Hasenstein KH
    Physiologist; 1985 Dec; 28(6 Suppl):S119-20. PubMed ID: 3834428
    [No Abstract]   [Full Text] [Related]  

  • 33. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna.
    Zhao H; Hertel R; Ishikawa H; Evans ML
    Planta; 2002 Dec; 216(2):293-301. PubMed ID: 12447543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auxin transport in roots.
    Wilkins MB; Scott TK
    Nature; 1968 Sep; 219(5161):1388-9. PubMed ID: 5678027
    [No Abstract]   [Full Text] [Related]  

  • 35. Auxin Redistribution during First Positive Phototropism in Corn Coleoptiles : Microtubule Reorientation and the Cholodny-Went Theory.
    Nick P; Schäfer E; Furuya M
    Plant Physiol; 1992 Aug; 99(4):1302-8. PubMed ID: 16669036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays.
    Lee JS; Chang W-K ; Evans ML
    Plant Physiol; 1990; 94(4):1770-5. PubMed ID: 11537475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Plant growth and development, and auxin polar transport in space conditions].
    Ueda J
    Biol Sci Space; 1999 Sep; 13(3):122-3. PubMed ID: 12532986
    [No Abstract]   [Full Text] [Related]  

  • 38. A chemoreceptive bilayer lipid membrane based on an auxin-receptor ATPase electrogenic pump.
    Thompson M; Krull UJ; Venis MA
    Biochem Biophys Res Commun; 1983 Jan; 110(1):300-4. PubMed ID: 6220699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seedling development in buckwheat and the discovery of the photomorphogenic shade-avoidance response.
    Kutschera U; Briggs WR
    Plant Biol (Stuttg); 2013 Nov; 15(6):931-40. PubMed ID: 24112603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The relation of water availability and auxin in the growth of Avena coleoptiles and its meaning for a theory of tropisms.
    SHOWACRE JL; du BUY HG
    Am J Bot; 1947 Apr; 34(4):175-82. PubMed ID: 20249516
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.