BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1346137)

  • 1. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation.
    Fisher MT; Stadtman ER
    J Biol Chem; 1992 Jan; 267(3):1872-80. PubMed ID: 1346137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic effects of active-site ligands on the reversible, partial unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric studies.
    Zolkiewski M; Ginsburg A
    Biochemistry; 1992 Dec; 31(48):11991-2000. PubMed ID: 1360813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for oxidative modification of glutamine synthetase, based on crystal structures of mutant H269N and the oxidized enzyme.
    Liaw SH; Villafranca JJ; Eisenberg D
    Biochemistry; 1993 Aug; 32(31):7999-8003. PubMed ID: 8102250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial unfolding of dodecameric glutamine synthetase from Escherichia coli: temperature-induced, reversible transitions of two domains.
    Shrake A; Fisher MT; McFarland PJ; Ginsburg A
    Biochemistry; 1989 Jul; 28(15):6281-94. PubMed ID: 2571357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-catalyzed oxidation of Escherichia coli glutamine synthetase: correlation of structural and functional changes.
    Rivett AJ; Levine RL
    Arch Biochem Biophys; 1990 Apr; 278(1):26-34. PubMed ID: 1969723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP.
    Fisher MT
    Biochemistry; 1992 Apr; 31(16):3955-63. PubMed ID: 1348957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive.
    Pearson JT; Dabrowski MJ; Kung I; Atkins WM
    Arch Biochem Biophys; 2005 Apr; 436(2):397-405. PubMed ID: 15797252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular self-assembly of Escherichia coli glutamine synthetase: effects of pressure and adenylylation state on dodecamer stacking.
    Atkins WM
    Biochemistry; 1994 Dec; 33(50):14965-73. PubMed ID: 7999752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distances between active site probes in glutamine synthetase from Escherichia coli: fluorescence energy transfer in free and in stacked dodecamers.
    Maurizi MR; Kasprzyk PG; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):141-51. PubMed ID: 2869781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urea-induced dissociation and unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric and spectral studies.
    Zolkiewski M; Nosworthy NJ; Ginsburg A
    Protein Sci; 1995 Aug; 4(8):1544-52. PubMed ID: 8520480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
    Liaw SH; Kuo I; Eisenberg D
    Protein Sci; 1995 Nov; 4(11):2358-65. PubMed ID: 8563633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Cibacron Blue F3GA with glutamine synthetase: use of the dye as a conformational probe. 1. Studies using unfractionated dye samples.
    Federici MM; Chock PB; Stadtman ER
    Biochemistry; 1985 Jan; 24(3):647-60. PubMed ID: 2859880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the catalytic roles of n2-site glutamate residues in Escherichia coli glutamine synthetase by mutagenesis.
    Witmer MR; Palmieri-Young D; Villafranca JJ
    Protein Sci; 1994 Oct; 3(10):1746-59. PubMed ID: 7849593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential scanning calorimetry study of reversible, partial unfolding transitions in dodecameric glutamine synthetase from Escherichia coli.
    Ginsburg A; Zolkiewski M
    Biochemistry; 1991 Oct; 30(39):9421-9. PubMed ID: 1680002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative inactivation of glutamine synthetase subunits.
    Nakamura K; Stadtman ER
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2011-5. PubMed ID: 6144100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of substrates with glutamine synthetase after limited proteolysis.
    Monroe DM; Noyes CM; Lundblad RL; Kingdon HS; Griffith MJ
    Biochemistry; 1984 Sep; 23(20):4565-72. PubMed ID: 6149764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Bacillus subtilis glutamine synthetase by limited proteolysis.
    Kimura K; Sugano S; Funae A; Nakano Y
    J Biochem; 1991 Oct; 110(4):526-31. PubMed ID: 1685734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions.
    Atkins WM; Cader BM; Hemmingsen J; Villafranca JJ
    Protein Sci; 1993 May; 2(5):800-13. PubMed ID: 8098638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis.
    Hauf K; Kayumov A; Gloge F; Forchhammer K
    J Biol Chem; 2016 Feb; 291(7):3483-95. PubMed ID: 26635369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.