BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 134627)

  • 21. Substituent effects on the electron transfer reactivity of hydroquinones with laccase blue copper.
    Clemmer JD; Gilliland BL; Bartsch RA; Holwerda RA
    Biochim Biophys Acta; 1979 Jun; 568(2):307-20. PubMed ID: 158390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic and kinetic studies on the oxygen-centered radical formed during the four-electron reduction process of dioxygen by Rhus vernicifera laccase.
    Huang H; Zoppellaro G; Sakurai T
    J Biol Chem; 1999 Nov; 274(46):32718-24. PubMed ID: 10551829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Yeast copper-thionein can reconstitute the Japanese-lacquer-tree (Rhus vernicifera) laccase from the Type 2-copper-depleted enzyme via a direct copper(I)-transfer mechanism.
    Morpurgo L; Hartmann HJ; Desideri A; Weser U; Rotilio G
    Biochem J; 1983 May; 211(2):515-7. PubMed ID: 6307284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cobalt II substitution in the type 1 site of the multi-copper oxidase Rhus laccase.
    Larrabee JA; Spiro TG
    Biochem Biophys Res Commun; 1979 Jun; 88(3):753-60. PubMed ID: 157133
    [No Abstract]   [Full Text] [Related]  

  • 25. Anaerobic reactions of Rhus vernicifera laccase and its type-2 copper-depleted derivatives with hexacyanoferrate(II).
    Sakurai T
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):681-5. PubMed ID: 1320374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reductant-dependent electron distribution among redox sites of laccase.
    Farver O; Goldberg M; Wherland S; Pecht I
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5245-9. PubMed ID: 152921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stereochemistry of anion complexes of type 2 Cu(II) in Rhus vernicifera laccase. Analogy with superoxide dismutase and Cu(II) carbonic anhydrase.
    Desideri A; Morpurgo L; Rotilio G; Mondovì B
    FEBS Lett; 1979 Feb; 98(2):339-41. PubMed ID: 217736
    [No Abstract]   [Full Text] [Related]  

  • 28. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin.
    Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B
    J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peroxide binding to the type 3 site in Rhus vernicifera laccase depleted of type 2 copper.
    Farver O; Frank P; Pecht I
    Biochem Biophys Res Commun; 1982 Sep; 108(1):273-8. PubMed ID: 6216886
    [No Abstract]   [Full Text] [Related]  

  • 30. Copper transfer from Rhus vernicifera laccase.
    Meadows KA; Morie-Bebel MM; McMillin DR
    J Inorg Biochem; 1991 Mar; 41(4):253-60. PubMed ID: 1647440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Study on the interaction between Pd(II) and Rhus vernicifera laccase].
    Tu C; Liang H; Wang G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):524-6. PubMed ID: 12945281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pulsed electron paramagnetic resonance studies of types I and II coper of Rhus vernicifera laccase and porcine ceruloplasmin.
    Mondoví B; Graziani MT; Mims WB; Oltzik R; Peisach J
    Biochemistry; 1977 Sep; 16(19):4198-202. PubMed ID: 197989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrite reactivity of the binuclear copper site in T2D Rhus laccase: preparation of half met-NO2- T2D laccase and its correlation to half met-NO2- hemocyanin and tyrosinase.
    Spira DJ; Solomon EI
    Biochem Biophys Res Commun; 1983 Apr; 112(2):729-36. PubMed ID: 6303331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites.
    Augustine AJ; Kragh ME; Sarangi R; Fujii S; Liboiron BD; Stoj CS; Kosman DJ; Hodgson KO; Hedman B; Solomon EI
    Biochemistry; 2008 Feb; 47(7):2036-45. PubMed ID: 18197705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactions of nitric oxide with tree and fungal laccase.
    Martin CT; Morse RH; Kanne RM; Gray HB; Malmström BG; Chan SI
    Biochemistry; 1981 Sep; 20(18):5147-55. PubMed ID: 6271178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The removal of the type-2 copper from Rhus vernicifera laccase.
    Li J; McMillin DR
    Biochim Biophys Acta; 1992 Dec; 1160(3):239-45. PubMed ID: 1477094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of the reduction of Rhus vernicifera laccase by ferrocyanide ion.
    Holwerda RA; Gray HB
    J Am Chem Soc; 1975 Oct; 97(21):6036-41. PubMed ID: 126253
    [No Abstract]   [Full Text] [Related]  

  • 38. Reduction of laccase type 1 copper by 3,4-dihydroxyphenylalanine and other catechol derivatives.
    Wynn M; Stevens G; Knaff DB; Holwerda RA
    Arch Biochem Biophys; 1983 Jun; 223(2):662-6. PubMed ID: 6222699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Steady-state kinetics of laccasse from Rhus vernicifera.
    Petersen LC; Degn H
    Biochim Biophys Acta; 1978 Sep; 526(1):85-92. PubMed ID: 150864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-temperature resonance-Raman spectra of Japanese-lacquer-tree (Rhus vernicifera) laccase, type-2-copper-depleted laccase and H2O2-treated type-2-copper-depleted laccase.
    Musci G; Desideri A; Morpurgo L; Garnier-Suillerot A; Tosi L
    Biochem J; 1983 Aug; 213(2):503-6. PubMed ID: 6225424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.