These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 1346314)
1. Detection of wheat contamination in dietary non-wheat products by PCR. Allmann M; Candrian U; Lüthy J Lancet; 1992 Feb; 339(8788):309. PubMed ID: 1346314 [No Abstract] [Full Text] [Related]
2. Polymerase chain reaction (PCR): a possible alternative to immunochemical methods assuring safety and quality of food. Detection of wheat contamination in non-wheat food products. Allmann M; Candrian U; Höfelein C; Lüthy J Z Lebensm Unters Forsch; 1993 Mar; 196(3):248-51. PubMed ID: 8465611 [TBL] [Abstract][Full Text] [Related]
3. Detection of soft wheat in semolina and durum wheat bread by analysis of DNA microsatellites. Pasqualone A; Montemurro C; Grinn-Gofron A; Sonnante G; Blanco A J Agric Food Chem; 2007 May; 55(9):3312-8. PubMed ID: 17394336 [TBL] [Abstract][Full Text] [Related]
4. Validation and application of a quantitative real-time PCR assay to detect common wheat adulteration of durum wheat for pasta production. Carloni E; Amagliani G; Omiccioli E; Ceppetelli V; Del Mastro M; Rotundo L; Brandi G; Magnani M Food Chem; 2017 Jun; 224():86-91. PubMed ID: 28159297 [TBL] [Abstract][Full Text] [Related]
5. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR. Sonnante G; Montemurro C; Morgese A; Sabetta W; Blanco A; Pasqualone A J Agric Food Chem; 2009 Nov; 57(21):10199-204. PubMed ID: 19886680 [TBL] [Abstract][Full Text] [Related]
6. Untargeted DNA-based methods for the authentication of wheat species and related cereals in food products. Silletti S; Morello L; Gavazzi F; Gianì S; Braglia L; Breviario D Food Chem; 2019 Jan; 271():410-418. PubMed ID: 30236695 [TBL] [Abstract][Full Text] [Related]
7. The safe threshold for gluten contamination in gluten-free products. Can trace amounts be accepted in the treatment of coeliac disease? Collin P; Thorell L; Kaukinen K; Mäki M Aliment Pharmacol Ther; 2004 Jun; 19(12):1277-83. PubMed ID: 15191509 [TBL] [Abstract][Full Text] [Related]
8. Alternaria toxins in Argentinean wheat, bran, and flour. Romero Bernal ÁR; Reynoso CM; García Londoño VA; Broggi LE; Resnik SL Food Addit Contam Part B Surveill; 2019 Mar; 12(1):24-30. PubMed ID: 30160642 [TBL] [Abstract][Full Text] [Related]
9. [Microbiological contamination of wheat and rye flour used for baking in Szczecin bakery and confectionery plants]. Warzecha A; Jakubowska B; Siwicka H Rocz Panstw Zakl Hig; 1987; 38(6):498-505. PubMed ID: 3451352 [No Abstract] [Full Text] [Related]
10. Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. Mayer F; Haase I; Graubner A; Heising F; Paschke-Kratzin A; Fischer M J Agric Food Chem; 2012 Feb; 60(6):1350-7. PubMed ID: 22264072 [TBL] [Abstract][Full Text] [Related]
12. Fumonisin occurrence in wheat-based products from Argentina. Cendoya E; Nichea MJ; Monge MP; Sulyok M; Chiacchiera SM; Ramirez ML Food Addit Contam Part B Surveill; 2019 Mar; 12(1):31-37. PubMed ID: 30280644 [TBL] [Abstract][Full Text] [Related]
13. Deoxynivalenol in wheat, maize, wheat flour and pasta: surveys in Hungary in 2008-2015. Tima H; Berkics A; Hannig Z; Ittzés A; Kecskésné Nagy E; Mohácsi-Farkas C; Kiskó G Food Addit Contam Part B Surveill; 2018 Mar; 11(1):37-42. PubMed ID: 29105597 [TBL] [Abstract][Full Text] [Related]
14. Effect of cooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat products. Sugita-Konishi Y; Park BJ; Kobayashi-Hattori K; Tanaka T; Chonan T; Yoshikawa K; Kumagai S Biosci Biotechnol Biochem; 2006 Jul; 70(7):1764-8. PubMed ID: 16861811 [TBL] [Abstract][Full Text] [Related]
15. Deoxynivalenol and other Fusarium toxins in wheat and rye flours on the Danish market. Rasmussen PH; Ghorbani F; Berg T Food Addit Contam; 2003 Apr; 20(4):396-404. PubMed ID: 12775483 [TBL] [Abstract][Full Text] [Related]
16. Occurrence and risk assessment of population exposed to deoxynivalenol in foods derived from wheat flour in Brazil. Silva MV; Pante GC; Romoli JCZ; de Souza APM; Rocha GHOD; Ferreira FD; Feijó ALR; Moscardi SMP; de Paula KR; Bando E; Nerilo SB; Machinski M Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Mar; 35(3):546-554. PubMed ID: 29210608 [TBL] [Abstract][Full Text] [Related]
17. Development of a Method for Evaluating Floor Dry-Cleanability from Wheat Flour in the Food Industry. Barreca F; Cardinali GD; Borgese E; Russo M J Food Sci; 2017 Apr; 82(4):939-944. PubMed ID: 28267863 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the TLC quantification method and occurrence of deoxynivalenol in wheat flour of southern Brazil. Rocha DFL; Oliveira MDS; Furlong EB; Junges A; Paroul N; Valduga E; Backes GT; Zeni J; Cansian RL Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Dec; 34(12):2220-2229. PubMed ID: 28786343 [TBL] [Abstract][Full Text] [Related]
19. [Electrophoretic analysis of buckwheat flour compared with regular wheat flour]. de Francischi ML; Salgado JM; Carvalho MT; Derbyshire E Arch Latinoam Nutr; 1994 Dec; 44(4):274-6. PubMed ID: 8984969 [TBL] [Abstract][Full Text] [Related]
20. [Pollution investigation of deoxynivalenol in wheat flour of China in 2013]. Lu J; Yang D Wei Sheng Yan Jiu; 2015 Jul; 44(4):658-60. PubMed ID: 26454968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]