These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 1346749)
1. Influence of the size and protonation state of acidic residue 85 on the absorption spectrum and photoreaction of the bacteriorhodopsin chromophore. Lanyi JK; Tittor J; Váró G; Krippahl G; Oesterhelt D Biochim Biophys Acta; 1992 Jan; 1099(1):102-10. PubMed ID: 1346749 [TBL] [Abstract][Full Text] [Related]
2. Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base. Needleman R; Chang M; Ni B; Váró G; Fornés J; White SH; Lanyi JK J Biol Chem; 1991 Jun; 266(18):11478-84. PubMed ID: 1646807 [TBL] [Abstract][Full Text] [Related]
3. Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation. Subramaniam S; Marti T; Khorana HG Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1013-7. PubMed ID: 1967832 [TBL] [Abstract][Full Text] [Related]
4. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Richter HT; Brown LS; Needleman R; Lanyi JK Biochemistry; 1996 Apr; 35(13):4054-62. PubMed ID: 8672439 [TBL] [Abstract][Full Text] [Related]
5. Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Balashov SP; Imasheva ES; Govindjee R; Ebrey TG Biophys J; 1996 Jan; 70(1):473-81. PubMed ID: 8770224 [TBL] [Abstract][Full Text] [Related]
6. Ultraviolet-visible transient spectroscopy of bacteriorhodopsin mutants. Evidence for two forms of tyrosine-185----phenylalanine. Duñach M; Berkowitz S; Marti T; He YW; Subramaniam S; Khorana HG; Rothschild KJ J Biol Chem; 1990 Oct; 265(28):16978-84. PubMed ID: 2211603 [TBL] [Abstract][Full Text] [Related]
7. Protein changes associated with reprotonation of the Schiff base in the photocycle of Asp96-->Asn bacteriorhodopsin. The MN intermediate with unprotonated Schiff base but N-like protein structure. Sasaki J; Shichida Y; Lanyi JK; Maeda A J Biol Chem; 1992 Oct; 267(29):20782-6. PubMed ID: 1400394 [TBL] [Abstract][Full Text] [Related]
8. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Balashov SP; Govindjee R; Imasheva ES; Misra S; Ebrey TG; Feng Y; Crouch RK; Menick DR Biochemistry; 1995 Jul; 34(27):8820-34. PubMed ID: 7612623 [TBL] [Abstract][Full Text] [Related]
9. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate. Gat Y; Friedman N; Sheves M; Ottolenghi M Biochemistry; 1997 Apr; 36(14):4135-48. PubMed ID: 9100007 [TBL] [Abstract][Full Text] [Related]
10. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966 [TBL] [Abstract][Full Text] [Related]
11. Local-access model for proton transfer in bacteriorhodopsin. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720 [TBL] [Abstract][Full Text] [Related]
12. Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism. Brown LS; Needleman R; Lanyi JK Biochemistry; 1996 Dec; 35(50):16048-54. PubMed ID: 8973174 [TBL] [Abstract][Full Text] [Related]
13. Time-resolved Fourier transform infrared spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: Asp-96 reprotonates during O formation; Asp-85 and Asp-212 deprotonate during O decay. Bousché O; Sonar S; Krebs MP; Khorana HG; Rothschild KJ Photochem Photobiol; 1992 Dec; 56(6):1085-95. PubMed ID: 1337213 [TBL] [Abstract][Full Text] [Related]
15. Pathway of proton uptake in the bacteriorhodopsin photocycle. Zimányi L; Cao Y; Needleman R; Ottolenghi M; Lanyi JK Biochemistry; 1993 Aug; 32(30):7669-78. PubMed ID: 8347577 [TBL] [Abstract][Full Text] [Related]
16. Intramolecular charge transfer in the bacteriorhodopsin mutants Asp85-->Asn and Asp212-->Asn: effects of pH and anions. Moltke S; Krebs MP; Mollaaghababa R; Khorana HG; Heyn MP Biophys J; 1995 Nov; 69(5):2074-83. PubMed ID: 8580351 [TBL] [Abstract][Full Text] [Related]
17. The protonation-deprotonation kinetics of the protonated Schiff base in bicelle bacteriorhodopsin crystals. Sanii LS; Schill AW; Moran CE; El-Sayed MA Biophys J; 2005 Jul; 89(1):444-51. PubMed ID: 15821169 [TBL] [Abstract][Full Text] [Related]
18. Effects of Asp-96----Asn, Asp-85----Asn, and Arg-82----Gln single-site substitutions on the photocycle of bacteriorhodopsin. Thorgeirsson TE; Milder SJ; Miercke LJ; Betlach MC; Shand RF; Stroud RM; Kliger DS Biochemistry; 1991 Sep; 30(38):9133-42. PubMed ID: 1892824 [TBL] [Abstract][Full Text] [Related]
19. Control of the pump cycle in bacteriorhodopsin: mechanisms elucidated by solid-state NMR of the D85N mutant. Hatcher ME; Hu JG; Belenky M; Verdegem P; Lugtenburg J; Griffin RG; Herzfeld J Biophys J; 2002 Feb; 82(2):1017-29. PubMed ID: 11806941 [TBL] [Abstract][Full Text] [Related]
20. The residues Leu 93 and Asp 96 act independently in the bacteriorhodopsin photocycle: studies with the leu 93-->Ala, Asp 96-->Asn double mutant. Delaney JK; Subramaniam S Biophys J; 1996 May; 70(5):2366-72. PubMed ID: 9172761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]