These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 1346785)

  • 1. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. IV. Reconstitution of an asymmetric, dimeric DNA polymerase III holoenzyme.
    Wu CA; Zechner EL; Hughes AJ; Franden MA; McHenry CS; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4064-73. PubMed ID: 1346785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis.
    Wu CA; Zechner EL; Reems JA; McHenry CS; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4074-83. PubMed ID: 1740453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size.
    Wu CA; Zechner EL; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4030-44. PubMed ID: 1740451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. III. A polymerase-primase interaction governs primer size.
    Zechner EL; Wu CA; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4054-63. PubMed ID: 1531480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. II. Frequency of primer synthesis and efficiency of primer utilization control Okazaki fragment size.
    Zechner EL; Wu CA; Marians KJ
    J Biol Chem; 1992 Feb; 267(6):4045-53. PubMed ID: 1740452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    J Biol Chem; 1996 Aug; 271(35):21406-12. PubMed ID: 8702922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The E. coli DNA Replication Fork.
    Lewis JS; Jergic S; Dixon NE
    Enzymes; 2016; 39():31-88. PubMed ID: 27241927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Polymerase III, but Not Polymerase IV, Must Be Bound to a τ-Containing DnaX Complex to Enable Exchange into Replication Forks.
    Yuan Q; Dohrmann PR; Sutton MD; McHenry CS
    J Biol Chem; 2016 May; 291(22):11727-35. PubMed ID: 27056333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA Polymerase III holoenzyme of Escherichia coli. IV. The holoenzyme is an asymmetric dimer with twin active sites.
    Maki H; Maki S; Kornberg A
    J Biol Chem; 1988 May; 263(14):6570-8. PubMed ID: 3283128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two distinct triggers for cycling of the lagging strand polymerase at the replication fork.
    Li X; Marians KJ
    J Biol Chem; 2000 Nov; 275(44):34757-65. PubMed ID: 10948202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total reconstitution of DNA polymerase III holoenzyme reveals dual accessory protein clamps.
    O'Donnell M; Studwell PS
    J Biol Chem; 1990 Jan; 265(2):1179-87. PubMed ID: 2404006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The delta subunit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in Escherichia coli.
    Leu FP; Hingorani MM; Turner J; O'Donnell M
    J Biol Chem; 2000 Nov; 275(44):34609-18. PubMed ID: 10924523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template.
    Yuan Q; McHenry CS
    J Biol Chem; 2009 Nov; 284(46):31672-9. PubMed ID: 19749191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bacteriophage T4 DNA replication fork. Only DNA helicase is required for leading strand DNA synthesis by the DNA polymerase holoenzyme.
    Cha TA; Alberts BM
    J Biol Chem; 1989 Jul; 264(21):12220-5. PubMed ID: 2545703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of enzymatic interactions during short flap human Okazaki fragment processing by two forms of human DNA polymerase δ.
    Lin SH; Wang X; Zhang S; Zhang Z; Lee EY; Lee MY
    DNA Repair (Amst); 2013 Nov; 12(11):922-35. PubMed ID: 24035200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E. coli primase and DNA polymerase III holoenzyme are able to bind concurrently to a primed template during DNA replication.
    Bogutzki A; Naue N; Litz L; Pich A; Curth U
    Sci Rep; 2019 Oct; 9(1):14460. PubMed ID: 31595021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cycling of the E. coli lagging strand polymerase is triggered exclusively by the availability of a new primer at the replication fork.
    Yuan Q; McHenry CS
    Nucleic Acids Res; 2014 Feb; 42(3):1747-56. PubMed ID: 24234450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro.
    Higuchi K; Katayama T; Iwai S; Hidaka M; Horiuchi T; Maki H
    Genes Cells; 2003 May; 8(5):437-49. PubMed ID: 12694533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RETRACTED: Polymerase exchange during Okazaki fragment synthesis observed in living cells.
    Lia G; Michel B; Allemand JF
    Science; 2012 Jan; 335(6066):328-31. PubMed ID: 22194411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tau protects beta in the leading-strand polymerase complex at the replication fork.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    J Biol Chem; 1996 Feb; 271(8):4315-8. PubMed ID: 8626779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.