These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 1346989)
1. Formation of a carbamoyl glucuronide conjugate of carvedilol in vitro using dog and rat liver microsomes. Schaefer WH Drug Metab Dispos; 1992; 20(1):130-3. PubMed ID: 1346989 [No Abstract] [Full Text] [Related]
2. Oxidation of R(+)- and S(-)-carvedilol by rat liver microsomes. Evidence for stereoselective oxidation and characterization of the cytochrome P450 isozymes involved. Fujimaki M Drug Metab Dispos; 1994; 22(5):700-8. PubMed ID: 7835220 [TBL] [Abstract][Full Text] [Related]
3. Stereoselective glucuronidation of carvedilol in human liver and intestinal microsomes. Hanioka N; Tanaka S; Moriguchi Y; Narimatsu S Pharmacology; 2012; 90(3-4):117-24. PubMed ID: 22814440 [TBL] [Abstract][Full Text] [Related]
4. Formation of a beta-glucuronidase-resistant glucuronide conjugate of digitoxin by dog liver microsomes. Castle MC Drug Metab Dispos; 1993; 21(6):1147-50. PubMed ID: 7905397 [TBL] [Abstract][Full Text] [Related]
5. Contribution of polymorphisms in UDP-glucuronosyltransferase and CYP2D6 to the individual variation in disposition of carvedilol. Takekuma Y; Takenaka T; Kiyokawa M; Yamazaki K; Okamoto H; Kitabatake A; Tsutsui H; Sugawara M J Pharm Pharm Sci; 2006; 9(1):101-12. PubMed ID: 16849011 [TBL] [Abstract][Full Text] [Related]
6. Metabolite identification by data-dependent accurate mass spectrometric analysis at resolving power of 60,000 in external calibration mode using an LTQ/Orbitrap. Lim HK; Chen J; Sensenhauser C; Cook K; Subrahmanyam V Rapid Commun Mass Spectrom; 2007; 21(12):1821-32. PubMed ID: 17497624 [TBL] [Abstract][Full Text] [Related]
7. Application of substrate depletion assay to evaluation of CYP isoforms responsible for stereoselective metabolism of carvedilol. Iwaki M; Niwa T; Bandoh S; Itoh M; Hirose H; Kawase A; Komura H Drug Metab Pharmacokinet; 2016 Dec; 31(6):425-432. PubMed ID: 27836712 [TBL] [Abstract][Full Text] [Related]
8. Involvement of the CYP1A subfamily in stereoselective metabolism of carvedilol in beta-naphthoflavone-treated Caco-2 cells. Ishida K; Taguchi M; Akao T; Hashimoto Y Biol Pharm Bull; 2009 Mar; 32(3):513-6. PubMed ID: 19252307 [TBL] [Abstract][Full Text] [Related]
9. Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Warne T; Edwards PC; Leslie AG; Tate CG Structure; 2012 May; 20(5):841-9. PubMed ID: 22579251 [TBL] [Abstract][Full Text] [Related]
10. Development of a high-performance liquid chromatographic method for the analysis of enatiomer/enantiomer interaction in oxidative metabolism of bunitrolol in rat liver microsomes. Narimatsu S; Huang Y; Mizukami T; Masubuchi Y; Suzuki T Anal Biochem; 1994 Oct; 222(1):256-61. PubMed ID: 7856858 [TBL] [Abstract][Full Text] [Related]
11. [Stereoselective glucuronidation of beta-blocking agents, 1-tert-butylamino-3-(2,3-dimethylphenoxy)-2-propanol (D-32) and propranolol, in animals, in vivo and in vitro]. Honma S; Ito T; Matsuki Y Yakugaku Zasshi; 1986 May; 106(5):406-13. PubMed ID: 2876088 [No Abstract] [Full Text] [Related]
12. Extracellular matrix proteins in cardiac fibroblasts derived from rat hearts with chronic pressure overload: effects of beta-receptor blockade. Grimm D; Huber M; Jabusch HC; Shakibaei M; Fredersdorf S; Paul M; Riegger GA; Kromer EP J Mol Cell Cardiol; 2001 Mar; 33(3):487-501. PubMed ID: 11181017 [TBL] [Abstract][Full Text] [Related]
13. Perturbing effects of carvedilol on a model membrane system: role of lipophilicity and chemical structure. Butler S; Wang R; Wunder SL; Cheng HY; Randall CS Biophys Chem; 2006 Feb; 119(3):307-15. PubMed ID: 16243429 [TBL] [Abstract][Full Text] [Related]
14. In vitro metabolism of a new anticancer agent, 6-N-formylamino-12, 13-dihydro-1,11-dihydroxy-13-(beta-D-glucopyranosil)5H-indolo+ ++[2,3-a]pyrrolo[3,4-c]carbazole-5,7(6H)-dione (NB-506), in mice, rats, dogs, and humans. Takenaga N; Hasegawa T; Ishii M; Ishizaki H; Hata S; Kamei T Drug Metab Dispos; 1999 Feb; 27(2):213-20. PubMed ID: 9929505 [TBL] [Abstract][Full Text] [Related]
15. Glucuronidation of 3'-azido-3'-deoxythymidine by rat and human liver microsomes. Cretton EM; Waterhous DV; Bevan R; Sommadossi JP Drug Metab Dispos; 1990; 18(3):369-72. PubMed ID: 1974201 [TBL] [Abstract][Full Text] [Related]
16. Pharmacogenetics and heart failure: a convergence with carvedilol. Meadowcroft AM; Williamson KM; Patterson JH; Pieper JA Pharmacotherapy; 1997; 17(4):637-9. PubMed ID: 9250542 [No Abstract] [Full Text] [Related]
17. Stereoselective glucuronidation of ofloxacin in rat liver microsomes. Okazaki O; Kurata T; Hakusui H; Tachizawa H Drug Metab Dispos; 1991; 19(2):376-80. PubMed ID: 1676640 [TBL] [Abstract][Full Text] [Related]
18. Identification of two major biliary metabolites of carvedilol in rats. Fujimaki M; Hakusui H Xenobiotica; 1990 Oct; 20(10):1025-34. PubMed ID: 2082592 [TBL] [Abstract][Full Text] [Related]
19. Effect of chronic hypoxic hypoxia on oxidation and glucuronidation of carvedilol in rats. Yamaura S; Fukao M; Ishida K; Taguchi M; Hashimoto Y Eur J Drug Metab Pharmacokinet; 2014 Mar; 39(1):53-9. PubMed ID: 23739952 [TBL] [Abstract][Full Text] [Related]
20. Stereoselective glucuronidation of carvedilol by Chinese liver microsomes. You LY; Yu CN; Xie SG; Chen SQ; Zeng S J Zhejiang Univ Sci B; 2007 Oct; 8(10):756-64. PubMed ID: 17910120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]