These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1346994)

  • 1. Microbial models of mammalian metabolism. Biotransformations of N-methylcarbazole using the fungus Cunninghamella echinulata.
    Yang W; Davis PJ
    Drug Metab Dispos; 1992; 20(1):38-46. PubMed ID: 1346994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial models of mammalian metabolism: involvement of cytochrome P450 in the N-demethylation of N-methylcarbazole by Cunninghamella echinulata.
    Yang W; Jiang T; Acosta D; Davis PJ
    Xenobiotica; 1993 Sep; 23(9):973-82. PubMed ID: 8291265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of a toxic, novel mammalian metabolite of N-methylcarbazole predicted by a fungal cell model of mammalian metabolism.
    Yang W; Jiang T; Acosta D; Davis PJ
    Toxicol Lett; 1992 May; 60(3):307-14. PubMed ID: 1595089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro metabolism and toxicity assessment of N-methylcarbazole in primary cultured rat hepatocytes.
    Yang W; Jiang TR; Davis PJ; Acosta D
    Toxicology; 1991; 68(3):217-26. PubMed ID: 1896996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial models of mammalian metabolism: biotransformations of phenacetin and its O-alkyl homologues with Cunninghamella species.
    Reddy CS; Acosta D; Davis PJ
    Xenobiotica; 1990 Dec; 20(12):1281-97. PubMed ID: 2075748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of tri-substituted methoxyamphetamines by Cunninghamella echinulata.
    Foster BC; McLeish J; Wilson DL; Whitehouse LW; Zamecnik J; Lodge BA
    Xenobiotica; 1992 Dec; 22(12):1383-94. PubMed ID: 1494884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxylation of carbazoles by Aspergillus flavus VKM F-1024.
    Lobastova TG; Sukhodolskaya GV; Nikolayeva VM; Baskunov BP; Turchin KF; Donova MV
    FEMS Microbiol Lett; 2004 Jun; 235(1):51-6. PubMed ID: 15158261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of N-methylcarbazole by rat lung microsomes.
    Ibe BO; Raj JU
    Exp Lung Res; 1994; 20(3):207-22. PubMed ID: 7925139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial models of mammalian metabolism. Biotransformations of HP 749 (besipirdine) using Cunninghamella elegans.
    Rao GP; Davis PJ
    Drug Metab Dispos; 1997 Jun; 25(6):709-15. PubMed ID: 9193872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal metabolism of 3-nitrofluoranthene.
    Pothuluri JV; Evans FE; Heinze TM; Cerniglia CE
    J Toxicol Environ Health; 1994 Jun; 42(2):209-18. PubMed ID: 8207756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial models of mammalian metabolism: stereoselective metabolism of warfarin in the fungus Cunninghamella elegans.
    Wong YW; Davis PJ
    Pharm Res; 1989 Nov; 6(11):982-7. PubMed ID: 2594692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal metabolism of 2-nitrofluorene.
    Pothuluri JV; Evans FE; Heinze TM; Fu PP; Cerniglia CE
    J Toxicol Environ Health; 1996 Apr; 47(6):587-99. PubMed ID: 8614025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of amitriptyline by Cunninghamella elegans.
    Zhang D; Evans FE; Freeman JP; Duhart B; Cerniglia CE
    Drug Metab Dispos; 1995 Dec; 23(12):1417-25. PubMed ID: 8689954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial models of mammalian metabolism. N-dealkylation of furosemide to yield the mammalian metabolite CSA using Cunninghamella elegans.
    Hezari M; Davis PJ
    Drug Metab Dispos; 1992; 20(6):882-8. PubMed ID: 1362941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemistry and biology of 7H-dibenzo[c,g]carbazole: synthesis and characterization of selected derivatives, metabolism in rat liver preparations and mutagenesis mediated by cultured rat hepatocytes.
    Stong DB; Christian RT; Jayasimhulu K; Wilson RM; Warshawsky D
    Carcinogenesis; 1989 Mar; 10(3):419-27. PubMed ID: 2924389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial transformation of the antihistamine pyrilamine maleate. Formation of potential mammalian metabolites.
    Hansen EB; Cerniglia CE; Korfmacher WA; Miller DW; Heflich RH
    Drug Metab Dispos; 1987; 15(1):97-106. PubMed ID: 2881765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbazole hydroxylation by the filamentous fungi of the Cunninghamella species.
    Zawadzka K; Bernat P; Felczak A; Lisowska K
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19658-66. PubMed ID: 26276273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial biotransformation of retinoic acid by Cunninghamella echinulata and Cunninghamella blakesleeana.
    Hartman DA; Basil JB; Robertson LW; Curley RW
    Pharm Res; 1990 Mar; 7(3):270-3. PubMed ID: 2339101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial detoxification of carvedilol, a β-adrenergic antagonist, by the filamentous fungus Cunninghamella echinulata.
    Zawadzka K; Bernat P; Felczak A; Lisowska K
    Chemosphere; 2017 Sep; 183():18-26. PubMed ID: 28531555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel microbial hydroxylation of 13-ethyl-17 beta-hydroxy-18,19-dinor-17 alpha-pregn-4-en-20-yn-3-one.
    Hu SH; Tian XF; Han GD
    Steroids; 1998 Feb; 63(2):88-92. PubMed ID: 9516718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.