These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 1347041)
1. P-glycoprotein. ATP hydrolysis by the N-terminal nucleotide-binding domain. Shimabuku AM; Nishimoto T; Ueda K; Komano T J Biol Chem; 1992 Mar; 267(7):4308-11. PubMed ID: 1347041 [TBL] [Abstract][Full Text] [Related]
2. Cloning, overexpression, purification, and characterization of the carboxyl-terminal nucleotide binding domain of P-glycoprotein. Sharma S; Rose DR J Biol Chem; 1995 Jun; 270(23):14085-93. PubMed ID: 7775470 [TBL] [Abstract][Full Text] [Related]
3. The ATPase and ATP-binding functions of P-glycoprotein--modulation by interaction with defined phospholipids. Romsicki Y; Sharom FJ Eur J Biochem; 1998 Aug; 256(1):170-8. PubMed ID: 9746361 [TBL] [Abstract][Full Text] [Related]
4. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. Sarkadi B; Price EM; Boucher RC; Germann UA; Scarborough GA J Biol Chem; 1992 Mar; 267(7):4854-8. PubMed ID: 1347044 [TBL] [Abstract][Full Text] [Related]
5. Production of a site specifically cleavable P-glycoprotein-beta-galactosidase fusion protein. Shimabuku AM; Saeki T; Ueda K; Komano T Agric Biol Chem; 1991 Apr; 55(4):1075-80. PubMed ID: 1369454 [TBL] [Abstract][Full Text] [Related]
6. Both ATP sites of human P-glycoprotein are essential but not symmetric. Hrycyna CA; Ramachandra M; Germann UA; Cheng PW; Pastan I; Gottesman MM Biochemistry; 1999 Oct; 38(42):13887-99. PubMed ID: 10529234 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of the N-terminal nucleotide binding domain of an ABC drug transporter of Candida albicans: uncommon cysteine 193 of Walker A is critical for ATP hydrolysis. Jha S; Karnani N; Dhar SK; Mukhopadhayay K; Shukla S; Saini P; Mukhopadhayay G; Prasad R Biochemistry; 2003 Sep; 42(36):10822-32. PubMed ID: 12962507 [TBL] [Abstract][Full Text] [Related]
8. Reconstitution of drug-stimulated ATPase activity following co-expression of each half of human P-glycoprotein as separate polypeptides. Loo TW; Clarke DM J Biol Chem; 1994 Mar; 269(10):7750-5. PubMed ID: 7907331 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the adenosinetriphosphatase and transport activities of purified cystic fibrosis transmembrane conductance regulator. Ketchum CJ; Rajendrakumar GV; Maloney PC Biochemistry; 2004 Feb; 43(4):1045-53. PubMed ID: 14744150 [TBL] [Abstract][Full Text] [Related]
10. Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Ambudkar SV; Lelong IH; Zhang J; Cardarelli CO; Gottesman MM; Pastan I Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8472-6. PubMed ID: 1356264 [TBL] [Abstract][Full Text] [Related]
11. The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP. Iismaa SE; Chung L; Wu MJ; Teller DC; Yee VC; Graham RM Biochemistry; 1997 Sep; 36(39):11655-64. PubMed ID: 9305955 [TBL] [Abstract][Full Text] [Related]
12. Cystic fibrosis-type mutational analysis in the ATP-binding cassette transporter signature of human P-glycoprotein MDR1. Hoof T; Demmer A; Hadam MR; Riordan JR; Tümmler B J Biol Chem; 1994 Aug; 269(32):20575-83. PubMed ID: 7914197 [TBL] [Abstract][Full Text] [Related]
13. Study of membrane orientation and glycosylated extracellular loops of mouse P-glycoprotein by in vitro translation. Zhang JT; Ling V J Biol Chem; 1991 Sep; 266(27):18224-32. PubMed ID: 1680860 [TBL] [Abstract][Full Text] [Related]
14. Molecular model and ATPase activity of carboxyl-terminal nucleotide binding domain from human P-glycoprotein. Qian F; Wei D; Liu J; Yang S Biochemistry (Mosc); 2006; 71 Suppl 1():S18-24, 1-2. PubMed ID: 16487063 [TBL] [Abstract][Full Text] [Related]
16. Identification of Rab6 as an N-ethylmaleimide-sensitive fusion protein-binding protein. Han SY; Park DY; Park SD; Hong SH Biochem J; 2000 Nov; 352 Pt 1(Pt 1):165-73. PubMed ID: 11062069 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the properties of the N-terminal nucleotide-binding domain of human P-glycoprotein. Booth CL; Pulaski L; Gottesman MM; Pastan I Biochemistry; 2000 May; 39(18):5518-26. PubMed ID: 10820025 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide triphosphatase activity of the N-terminal nucleotide-binding domains of the multidrug resistance proteins P-glycoprotein and MRP1. Wilkes DM; Wang C; Aristimuño PC; Castro AF; Altenberg GA Biochem Biophys Res Commun; 2002 Aug; 296(2):388-94. PubMed ID: 12163030 [TBL] [Abstract][Full Text] [Related]
19. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965 [TBL] [Abstract][Full Text] [Related]
20. ATP hydrolysis by a CFTR domain: pharmacology and effects of G551D mutation. Howell LD; Borchardt R; Cohn JA Biochem Biophys Res Commun; 2000 May; 271(2):518-25. PubMed ID: 10799328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]