These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 1347426)

  • 1. The molecular mechanism of "ecstasy" [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release.
    Rudnick G; Wall SC
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1817-21. PubMed ID: 1347426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphetamine derivatives interact with both plasma membrane and secretory vesicle biogenic amine transporters.
    Schuldiner S; Steiner-Mordoch S; Yelin R; Wall SC; Rudnick G
    Mol Pharmacol; 1993 Dec; 44(6):1227-31. PubMed ID: 7903417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p-Chloroamphetamine induces serotonin release through serotonin transporters.
    Rudnick G; Wall SC
    Biochemistry; 1992 Jul; 31(29):6710-8. PubMed ID: 1322169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-neurotoxic amphetamine derivatives release serotonin through serotonin transporters.
    Rudnick G; Wall SC
    Mol Pharmacol; 1993 Feb; 43(2):271-6. PubMed ID: 8429828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecstasy: towards an understanding of the biochemical basis of the actions of MDMA.
    Rattray M
    Essays Biochem; 1991; 26():77-87. PubMed ID: 1685707
    [No Abstract]   [Full Text] [Related]  

  • 6. Thioether metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine inhibit human serotonin transporter (hSERT) function and simultaneously stimulate dopamine uptake into hSERT-expressing SK-N-MC cells.
    Jones DC; Lau SS; Monks TJ
    J Pharmacol Exp Ther; 2004 Oct; 311(1):298-306. PubMed ID: 15169827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy"): pharmacology and toxicology in animals and humans.
    Steele TD; McCann UD; Ricaurte GA
    Addiction; 1994 May; 89(5):539-51. PubMed ID: 7913850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of MDMA ('ecstasy') on firing rates of serotonergic, dopaminergic, and noradrenergic neurons in the rat.
    Piercey MF; Lum JT; Palmer JR
    Brain Res; 1990 Sep; 526(2):203-6. PubMed ID: 1979517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The external gate of the human and Drosophila serotonin transporters requires a basic/acidic amino acid pair for 3,4-methylenedioxymethamphetamine (MDMA) translocation and the induction of substrate efflux.
    Sealover NR; Felts B; Kuntz CP; Jarrard RE; Hockerman GH; Lamb PW; Barker EL; Henry LK
    Biochem Pharmacol; 2016 Nov; 120():46-55. PubMed ID: 27638414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duloxetine inhibits effects of MDMA ("ecstasy") in vitro and in humans in a randomized placebo-controlled laboratory study.
    Hysek CM; Simmler LD; Nicola VG; Vischer N; Donzelli M; Krähenbühl S; Grouzmann E; Huwyler J; Hoener MC; Liechti ME
    PLoS One; 2012; 7(5):e36476. PubMed ID: 22574166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro release of [3H]5-hydroxytryptamine from fetal and maternal brain by drugs of abuse.
    Kramer K; Azmitia EC; Whitaker-Azmitia PM
    Brain Res Dev Brain Res; 1994 Mar; 78(1):142-6. PubMed ID: 7911745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MDMA (ecstasy) effects on cultured serotonergic neurons: evidence for Ca2(+)-dependent toxicity linked to release.
    Azmitia EC; Murphy RB; Whitaker-Azmitia PM
    Brain Res; 1990 Feb; 510(1):97-103. PubMed ID: 1969761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurochemistry and neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy").
    McKenna DJ; Peroutka SJ
    J Neurochem; 1990 Jan; 54(1):14-22. PubMed ID: 1967141
    [No Abstract]   [Full Text] [Related]  

  • 14. Uptake of the neurotoxin, 4-methylphenylpyridinium, into chromaffin granules and synaptic vesicles: a proton gradient drives its uptake through monoamine transporter.
    Moriyama Y; Amakatsu K; Futai M
    Arch Biochem Biophys; 1993 Sep; 305(2):271-7. PubMed ID: 8373164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin1B receptor activation mimics behavioral effects of presynaptic serotonin release.
    Rempel NL; Callaway CW; Geyer MA
    Neuropsychopharmacology; 1993 May; 8(3):201-11. PubMed ID: 8099482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines.
    Cozzi NV; Sievert MK; Shulgin AT; Jacob P; Ruoho AE
    Eur J Pharmacol; 1999 Sep; 381(1):63-9. PubMed ID: 10528135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [3H]3,4-methylenedioxymethamphetamine (MDMA) interactions with brain membranes and glass fiber filter paper.
    Wang SS; Ricaurte GA; Peroutka SJ
    Eur J Pharmacol; 1987 Jun; 138(3):439-43. PubMed ID: 2887443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter.
    Pifl C; Reither H; Hornykiewicz O
    Eur J Pharmacol; 2015 May; 755():119-26. PubMed ID: 25771452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of the cocaine analog 2 beta-[3H] carboxymethoxy-3 beta-(4-fluorophenyl)tropane to the serotonin transporter.
    Rudnick G; Wall SC
    Mol Pharmacol; 1991 Sep; 40(3):421-6. PubMed ID: 1896028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of the cocaine analog 2 beta-carbomethoxy-3 beta-(4-[125I]iodophenyl)tropane to serotonin and dopamine transporters: different ionic requirements for substrate and 2 beta-carbomethoxy-3 beta-(4-[125I]iodophenyl)tropane binding.
    Wall SC; Innis RB; Rudnick G
    Mol Pharmacol; 1993 Feb; 43(2):264-70. PubMed ID: 8429827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.