These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 13475310)
1. Biosynthesis of the purines. XVII. Further studies of the inosinic acid transformylase system. FLAKS JG; WARREN L; BUCHANAN JM J Biol Chem; 1957 Sep; 228(1):215-29. PubMed ID: 13475310 [No Abstract] [Full Text] [Related]
2. Biosynthesis of the purines. XIX. 2-Amino-N-ribosylacetamide 5'-phosphate (glycinamide ribotide) transformylase. WARREN L; BUCHANAN JM J Biol Chem; 1957 Dec; 229(2):613-26. PubMed ID: 13502326 [No Abstract] [Full Text] [Related]
3. Biosynthesis of the purines. XVIII. 5-Amino-1-ribosyl-4-imidazolecarboxamide 5'-phosphate transformylase and inosinicase. FLAKS JG; ERWIN MJ; BUCHANAN JM J Biol Chem; 1957 Dec; 229(2):603-12. PubMed ID: 13502325 [No Abstract] [Full Text] [Related]
4. Crystallization and preliminary crystallographic investigations of avian 5-aminoimidazole-4-carboxamide ribonucleotide transformylase-inosine monophosphate cyclohydrolase expressed in Escherichia coli. Reyes VM; Greasley SE; Stura EA; Beardsley GP; Wilson IA Acta Crystallogr D Biol Crystallogr; 2000 Aug; 56(Pt 8):1051-4. PubMed ID: 10944351 [TBL] [Abstract][Full Text] [Related]
5. Structure of avian AICAR transformylase with a multisubstrate adduct inhibitor beta-DADF identifies the folate binding site. Wolan DW; Greasley SE; Wall MJ; Benkovic SJ; Wilson IA Biochemistry; 2003 Sep; 42(37):10904-14. PubMed ID: 12974624 [TBL] [Abstract][Full Text] [Related]
6. 10-(2-benzoxazolcarbonyl)-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid: a potential inhibitor of GAR transformylase and AICAR transformylase. Marsilje TH; Hedrick MP; Desharnais J; Capps K; Tavassoli A; Zhang Y; Wilson IA; Benkovic SJ; Boger DL Bioorg Med Chem; 2003 Oct; 11(20):4503-9. PubMed ID: 13129586 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of the purines. III. Reactions of formate and inosinic acid and an effect of the citrovorum factor. BUCHANAN JM; SCHULMAN MP J Biol Chem; 1953 May; 202(1):241-52. PubMed ID: 13061451 [No Abstract] [Full Text] [Related]
8. Radioassay of bifunctional 5-aminoimidazole-4-carboxamide ribotide transformylase-IMP cyclohydrolase by thin-layer chromatography. Szabados E; Christopherson RI Anal Biochem; 1994 Sep; 221(2):401-4. PubMed ID: 7810885 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of the purines. V. Conversion of hypoxanthine to inosinic acid by liver enzymes. WILLIAMS WJ; BUCHANAN JM J Biol Chem; 1953 Aug; 203(2):583-93. PubMed ID: 13084628 [No Abstract] [Full Text] [Related]
10. Detection of inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase by thioinosinic acid and azathioprine by a new colorimetric assay. Ha T; Morgan SL; Vaughn WH; Eto I; Baggott JE Biochem J; 1990 Dec; 272(2):339-42. PubMed ID: 2268263 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. LEVENBERG B; MELNICK I; BUCHANAN JM J Biol Chem; 1957 Mar; 225(1):163-76. PubMed ID: 13416227 [No Abstract] [Full Text] [Related]
12. Direct transfer of one-carbon units in the transformylations of de novo purine biosynthesis. Smith GK; Mueller WT; Slieker LJ; DeBrosse CW; Benkovic SJ Biochemistry; 1982 Jun; 21(12):2870-4. PubMed ID: 7104299 [TBL] [Abstract][Full Text] [Related]
13. Characterization of two 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase isozymes from Saccharomyces cerevisiae. Tibbetts AS; Appling DR J Biol Chem; 2000 Jul; 275(27):20920-7. PubMed ID: 10877846 [TBL] [Abstract][Full Text] [Related]
14. Relationship between the catalytic sites of human bifunctional IMP synthase. Szabados E; Christopherson RI Int J Biochem Cell Biol; 1998 Aug; 30(8):933-42. PubMed ID: 9744084 [TBL] [Abstract][Full Text] [Related]
15. Design, synthesis, and biological evaluation of fluoronitrophenyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase. Boger DL; Marsilje TH; Castro RA; Hedrick MP; Jin Q; Baker SJ; Shim JH; Benkovic SJ Bioorg Med Chem Lett; 2000 Jul; 10(13):1471-5. PubMed ID: 10888335 [TBL] [Abstract][Full Text] [Related]
16. Assignment of a third purine biosynthetic gene (glycinamide ribonucleotide transformylase) to human chromosome 21. Hards RG; Benkovic SJ; Van Keuren ML; Graw SL; Drabkin HA; Patterson D Am J Hum Genet; 1986 Aug; 39(2):179-85. PubMed ID: 3529945 [TBL] [Abstract][Full Text] [Related]
17. 10-Formyl-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid (10-formyl-DDACTHF): a potent cytotoxic agent acting by selective inhibition of human GAR Tfase and the de novo purine biosynthetic pathway. Marsilje TH; Labroli MA; Hedrick MP; Jin Q; Desharnais J; Baker SJ; Gooljarsingh LT; Ramcharan J; Tavassoli A; Zhang Y; Wilson IA; Beardsley GP; Benkovic SJ; Boger DL Bioorg Med Chem; 2002 Aug; 10(8):2739-49. PubMed ID: 12057663 [TBL] [Abstract][Full Text] [Related]
18. Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli. Nygaard P; Smith JM J Bacteriol; 1993 Jun; 175(11):3591-7. PubMed ID: 8501063 [TBL] [Abstract][Full Text] [Related]
19. Pyrazofurin inhibition of purine biosynthesis via 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate formyltransferase. Worzalla JF; Sweeney MJ Cancer Res; 1980 May; 40(5):1482-5. PubMed ID: 7370986 [No Abstract] [Full Text] [Related]
20. The hormonal regulation of purine biosynthesis: control of the inosinic acid branch point. Pizzichini M; Di Stefano A; Pompucci G; Marinello E Adv Exp Med Biol; 1986; 195 Pt B():381-4. PubMed ID: 3766236 [No Abstract] [Full Text] [Related] [Next] [New Search]