These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 13475375)

  • 1. Studies on the enzymic reduction of amino acids. II. Purification and properties of D-proline reductase and a proline racemase from Clostridium sticklandii.
    STADTMAN TC; ELLIOTT P
    J Biol Chem; 1957 Oct; 228(2):983-97. PubMed ID: 13475375
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the enzymic reduction of amino acids: a proline reductase of an amino acid-fermenting Clostridium, strain HF.
    STADTMAN TC
    Biochem J; 1956 Apr; 62(4):614-21. PubMed ID: 13315223
    [No Abstract]   [Full Text] [Related]  

  • 3. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence.
    Fonknechten N; Chaussonnerie S; Tricot S; Lajus A; Andreesen JR; Perchat N; Pelletier E; Gouyvenoux M; Barbe V; Salanoubat M; Le Paslier D; Weissenbach J; Cohen GN; Kreimeyer A
    BMC Genomics; 2010 Oct; 11():555. PubMed ID: 20937090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pyruvate-containing peptide of proline reductase in Clostridium sticklandii.
    Seto B
    J Biol Chem; 1978 Jul; 253(13):4525-9. PubMed ID: 659433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and properties of proline reductase from Clostridium sticklandii.
    Seto B; Stadtman TC
    J Biol Chem; 1976 Apr; 251(8):2435-9. PubMed ID: 1262330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of serine and proline racemases by substrate-product analogues.
    Harty M; Nagar M; Atkinson L; Legay CM; Derksen DJ; Bearne SL
    Bioorg Med Chem Lett; 2014 Jan; 24(1):390-3. PubMed ID: 24314397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The participation of a quinone in the enzymic reduction of glycine by Clostridium sticklandii.
    STADTMAN TC
    Biochem Z; 1958; 331(1):46-8. PubMed ID: 13628592
    [No Abstract]   [Full Text] [Related]  

  • 8. Chemical characterization of an alkali-labile bond in the polypeptide of proline reductase from Clostridium sticklandii.
    Seto B
    J Biol Chem; 1980 Jun; 255(11):5004-6. PubMed ID: 7372621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proline biosynthesis from L-ornithine in Clostridium sticklandii: purification of delta1-pyrroline-5-carboxylate reductase, and sequence and expression of the encoding gene, proC.
    Kenklies J; Ziehn R; Fritsche K; Pich A; Andreesen JR
    Microbiology (Reading); 1999 Apr; 145 ( Pt 4)():819-826. PubMed ID: 10220161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition by glycine of the catabolic reduction of proline in Clostridium sticklandii: evidence on the regulation of amino acid reduction.
    Schwartz AC; Quecke W; Brenschede G
    Z Allg Mikrobiol; 1979; 19(3):211-20. PubMed ID: 516795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein.
    Kabisch UC; Gräntzdörffer A; Schierhorn A; Rücknagel KP; Andreesen JR; Pich A
    J Biol Chem; 1999 Mar; 274(13):8445-54. PubMed ID: 10085076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenium-dependent glycine reductase: differences in physicochemical properties and biological activities of selenoprotein A components isolated from Clostridium sticklandii and Clostridium purinolyticum.
    Sliwkowski MX; Stadtman TC
    Biofactors; 1988 Dec; 1(4):293-6. PubMed ID: 3255358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of proline reduction in the nosocomial pathogen Clostridium difficile.
    Jackson S; Calos M; Myers A; Self WT
    J Bacteriol; 2006 Dec; 188(24):8487-95. PubMed ID: 17041035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of alanine racemase and D-alanine dehydrogenase to active transport of amino acids in Escherichia coli B membrane vesicles.
    Kaczorowski G; Shaw L; F-entes M; Walsh C
    J Biol Chem; 1975 Apr; 250(8):2855-65. PubMed ID: 1091641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH-dependent reduction of D-proline in Clostridium sticklandii. Reconstitution from three fractions containing NADH dehydrogenase, D-proline reductase, and a third protein factor.
    Schwartz AC; Müller W
    Arch Microbiol; 1979 Nov; 123(2):203-8. PubMed ID: 231943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro processing of the proproteins GrdE of protein B of glycine reductase and PrdA of D-proline reductase from Clostridium sticklandii: formation of a pyruvoyl group from a cysteine residue.
    Bednarski B; Andreesen JR; Pich A
    Eur J Biochem; 2001 Jun; 268(12):3538-44. PubMed ID: 11422384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of adenine-B12 coenzyme by Clostridium sticklandii: relationship to one-carbon metabolism.
    STADTMAN TC
    J Bacteriol; 1960 Jun; 79(6):904-5. PubMed ID: 13833575
    [No Abstract]   [Full Text] [Related]  

  • 18. The end products of the metabolism of aromatic amino acids by Clostridia.
    Elsden SR; Hilton MG; Waller JM
    Arch Microbiol; 1976 Apr; 107(3):283-8. PubMed ID: 1275638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli.
    Garcia GE; Stadtman TC
    J Bacteriol; 1992 Nov; 174(22):7080-9. PubMed ID: 1429431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Catabolism of threonine in the bacterium Clostridium sticklandii].
    Golovchenko NP; Belokopytov BF; Akimenko VK
    Biokhimiia; 1982 Jul; 47(7):1159-64. PubMed ID: 6810959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.