These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The respiratory metabolism of insect flight muscle. I. Manometric studies of oxidation and concomitant phosphorylation with sarcosomes. SACKTOR B; COCHRAN DG Arch Biochem Biophys; 1958 Mar; 74(1):266-76. PubMed ID: 13522243 [No Abstract] [Full Text] [Related]
6. Microencapsulation of Aerococcus viridans with catalase and its application for the synthesis of dihydroxyacetone phosphate. Streitenberger SA; Villaverde MJ; Sánchez-Ferrer A; García-Carmona F Appl Microbiol Biotechnol; 2002 Jan; 58(1):73-6. PubMed ID: 11831477 [TBL] [Abstract][Full Text] [Related]
7. The stimulation of alpha-glycerol-phosphate oxidation by adenosine diphosphate in teased flight muscle. SACKTOR B; PACKER L Biochim Biophys Acta; 1961 May; 49():402-4. PubMed ID: 13745257 [No Abstract] [Full Text] [Related]
8. alpha-Glycerophosphate and dihydroxyacetone phosphate metabolism in rats fed high-fat or high-sucrose diets. Molaparast-Shahidsaless F; Shrago E; Elson CE J Nutr; 1979 Sep; 109(9):1560-9. PubMed ID: 479951 [No Abstract] [Full Text] [Related]
9. Reconstruction of rat skeletal muscle glycerophosphate shuttle. Scisłowski PW; Swierczyński J; Aleksandrowicz Z; Zydowo M Mol Cell Biochem; 1979 Sep; 27(1):3-6. PubMed ID: 229405 [TBL] [Abstract][Full Text] [Related]
10. The effect of Ca2+ on the oxidation of glycerol phosphate by blowfly flight-muscle mitochondria. Hansford RG; Chappell JB Biochem Biophys Res Commun; 1967 Jun; 27(6):686-92. PubMed ID: 4964598 [No Abstract] [Full Text] [Related]
11. Quantitative histochemical resolution of the oxidation-reduction and phosphate potentials within the simple hepatic acinus. Ghosh AK; Finegold D; White W; Zawalich K; Matschinsky FM J Biol Chem; 1982 May; 257(10):5476-81. PubMed ID: 7068601 [TBL] [Abstract][Full Text] [Related]
12. Factors affecting the oxidation of glycerol-1-phosphate by insect flight-muscle mitochondria. Donnellan JF; Beechey RB J Insect Physiol; 1969 Mar; 15(3):367-72. PubMed ID: 5779252 [No Abstract] [Full Text] [Related]
14. Towards a valid technique of sampling fish muscle to determine redox substrates. Börjeson H; Fellenius E Acta Physiol Scand; 1976 Feb; 96(2):202-6. PubMed ID: 1258670 [TBL] [Abstract][Full Text] [Related]
16. Inorganic phosphate and the rate of glycolysis in insect muscle. KUBISTA V; FOUSTKA M Nature; 1962 Aug; 195():702-3. PubMed ID: 14460095 [No Abstract] [Full Text] [Related]
17. The importance of alpha-glycerophosphate oxidase in oxidation of extramitochondrial reduced nicotinamide-adenine dinucleotide in vertebrate and insect muscle. Crabtree B; Newsholme EA Biochem J; 1969 Oct; 114(4):80P-81P. PubMed ID: 4310061 [No Abstract] [Full Text] [Related]
18. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate 2-oxoglutarate and malate in flight muscle and isolated mitochondria. Johnson RN; Hansford RG Biochem J; 1975 Mar; 146(3):527-35. PubMed ID: 1147907 [TBL] [Abstract][Full Text] [Related]
19. Biochemical adaptations for flight in the insect. Sacktor B Biochem Soc Symp; 1976; (41):111-31. PubMed ID: 788715 [TBL] [Abstract][Full Text] [Related]
20. Respiratory metabolism of insect flight muscle. II. Kinetics of respiratory enzymes in flight muscle sarcosomes. CHANCE B; SACKTOR B Arch Biochem Biophys; 1958 Aug; 76(2):509-31. PubMed ID: 13572036 [No Abstract] [Full Text] [Related] [Next] [New Search]