BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 1348251)

  • 1. Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging.
    Sammak PJ; Adams SR; Harootunian AT; Schliwa M; Tsien RY
    J Cell Biol; 1992 Apr; 117(1):57-72. PubMed ID: 1348251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of organelle transport in melanophores: regulation of Ca2+ and cAMP levels.
    Thaler CD; Haimo LT
    Cell Motil Cytoskeleton; 1992; 22(3):175-84. PubMed ID: 1330333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores.
    Kotz KJ; McNiven MA
    J Cell Biol; 1994 Feb; 124(4):463-74. PubMed ID: 8106546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is Ca2+ the second messenger in the response to melatonin in cuckoo wrasse melanophores?
    Mårtensson LG; Andersson RG
    Life Sci; 2000; 66(11):1003-10. PubMed ID: 10724447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple alpha 2-adrenoceptor signalling pathways mediate pigment aggregation within melanophores.
    Svensson SP; Adolfsson PI; Grundström N; Karlsson JO
    Pigment Cell Res; 1997 Dec; 10(6):395-400. PubMed ID: 9428007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of organelle movement in melanophores by protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2A (PP2A).
    Reilein AR; Tint IS; Peunova NI; Enikolopov GN; Gelfand VI
    J Cell Biol; 1998 Aug; 142(3):803-13. PubMed ID: 9700167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cAMP-activated apical membrane chloride conductance in gallbladder epithelium.
    Heming TA; Copello J; Reuss L
    J Gen Physiol; 1994 Jan; 103(1):1-18. PubMed ID: 8169593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The protein-phosphatase inhibitor okadaic acid mimics MSH-induced and melatonin-reversible melanosome dispersion in Xenopus laevis melanophores.
    Cozzi B; Rollag MD
    Pigment Cell Res; 1992 Sep; 5(3):148-54. PubMed ID: 1329076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adrenergic nerves and the alpha 2-adrenoceptor system regulating melanosome aggregation within fish melanophores.
    Andersson RG; Karlsson JO; Grundström N
    Acta Physiol Scand; 1984 Jun; 121(2):173-9. PubMed ID: 6147954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Okadaic acid suppresses calcium regulation of mitosis onset in sea urchin embryos.
    Patel R; Whitaker M
    Cell Regul; 1991 May; 2(5):391-402. PubMed ID: 1654128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores.
    Sugden D; Rowe SJ
    J Cell Biol; 1992 Dec; 119(6):1515-21. PubMed ID: 1334961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivated melanophore motility: differential regulation and nucleotide requirements of bidirectional pigment granule transport.
    Rozdzial MM; Haimo LT
    J Cell Biol; 1986 Dec; 103(6 Pt 2):2755-64. PubMed ID: 2432073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Okadaic acid indicates a major function for protein phosphatases in stimulus-response coupling of RINm5F rat insulinoma cells.
    Mayer P; Jochum C; Schatz H; Pfeiffer A
    Exp Clin Endocrinol; 1994; 102(4):313-9. PubMed ID: 7813603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of granule movement in fish melanophores.
    Grundström N; Karlsson JO; Andersson RG
    Acta Physiol Scand; 1985 Nov; 125(3):415-21. PubMed ID: 3853446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport.
    Reese EL; Haimo LT
    J Cell Biol; 2000 Oct; 151(1):155-66. PubMed ID: 11018061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbachol-induced protein phosphorylation in parietal cells: regulation by [Ca2+]i.
    Brown MR; Chew CS
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G99-110. PubMed ID: 2502025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-, phorbol ester-, and cAMP-stimulated enzyme secretion from permeabilized rat pancreatic acini.
    Kimura T; Imamura K; Eckhardt L; Schulz I
    Am J Physiol; 1986 May; 250(5 Pt 1):G698-708. PubMed ID: 2422955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of human sperm motility and hyperactivation components by calcium, calmodulin, and protein phosphatases.
    Ahmad K; Bracho GE; Wolf DP; Tash JS
    Arch Androl; 1995; 35(3):187-208. PubMed ID: 8585774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+/calmodulin and cyclic 3,5' adenosine monophosphate control movement of secretory granules through protein phosphorylation/dephosphorylation in the pancreatic beta-cell.
    Hisatomi M; Hidaka H; Niki I
    Endocrinology; 1996 Nov; 137(11):4644-9. PubMed ID: 8895328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of organelle transport in melanophores by calcineurin.
    Thaler CD; Haimo LT
    J Cell Biol; 1990 Nov; 111(5 Pt 1):1939-48. PubMed ID: 2172259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.