These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 1348272)
1. Does lineage determine the dopamine phenotype in the tadpole hypothalamus?: A quantitative analysis. Huang S; Moody SA J Neurosci; 1992 Apr; 12(4):1351-62. PubMed ID: 1348272 [TBL] [Abstract][Full Text] [Related]
2. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. Huang S; Moody SA J Neurosci; 1993 Aug; 13(8):3193-210. PubMed ID: 8340804 [TBL] [Abstract][Full Text] [Related]
3. Asymmetrical blastomere origin and spatial domains of dopamine and neuropeptide Y amacrine subtypes in Xenopus tadpole retina. Huang S; Moody SA J Comp Neurol; 1995 Sep; 360(3):442-53. PubMed ID: 8543650 [TBL] [Abstract][Full Text] [Related]
4. Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres. Moody SA J Neurosci; 1989 Aug; 9(8):2919-30. PubMed ID: 2769371 [TBL] [Abstract][Full Text] [Related]
5. Regulation of primary spinal neuron lineages after deletion of a major progenitor. Gallagher BC; Moody SA Biol Cell; 2004 Sep; 96(7):539-44. PubMed ID: 15380620 [TBL] [Abstract][Full Text] [Related]
6. Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus. Gallagher BC; Hainski AM; Moody SA Development; 1991 Aug; 112(4):1103-14. PubMed ID: 1935699 [TBL] [Abstract][Full Text] [Related]
7. Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Moody SA; Kline MJ Anat Embryol (Berl); 1990; 182(4):347-62. PubMed ID: 2252221 [TBL] [Abstract][Full Text] [Related]
8. Changes in Rx1 and Pax6 activity at eye field stages differentially alter the production of amacrine neurotransmitter subtypes in Xenopus. Zaghloul NA; Moody SA Mol Vis; 2007 Jan; 13():86-95. PubMed ID: 17277735 [TBL] [Abstract][Full Text] [Related]
10. Immunocytochemical colocalization of hypothalamic progestin receptors and tyrosine hydroxylase in steroid-treated monkeys. Kohama SG; Freesh F; Bethea CL Endocrinology; 1992 Jul; 131(1):509-17. PubMed ID: 1351839 [TBL] [Abstract][Full Text] [Related]
11. Presence of somatostatin or neurotensin in lateral septal dopaminergic axon terminals of distinct hypothalamic and midbrain origins: convergence on the somatospiny neurons. Jakab RL; Leranth C Exp Brain Res; 1993; 92(3):420-30. PubMed ID: 7681010 [TBL] [Abstract][Full Text] [Related]
13. Dopamine- and dopa-immunoreactive neurons in the cat forebrain with reference to tyrosine hydroxylase-immunohistochemistry. Kitahama K; Geffard M; Okamura H; Nagatsu I; Mons N; Jouvet M Brain Res; 1990 Jun; 518(1-2):83-94. PubMed ID: 1975219 [TBL] [Abstract][Full Text] [Related]
14. Neural differentiation in cleavage-arrested ascidian blastomeres induced by a proteolytic enzyme. Okado H; Takahashi K J Physiol; 1993 Apr; 463():269-90. PubMed ID: 8246183 [TBL] [Abstract][Full Text] [Related]
15. Immunocytochemical distribution of catecholamine-synthesizing neurons in the hypothalamus and pituitary gland of pigs: tyrosine hydroxylase and dopamine-beta-hydroxylase. Leshin LS; Kraeling RR; Kineman RD; Barb CR; Rampacek GB J Comp Neurol; 1996 Jan; 364(1):151-68. PubMed ID: 8789282 [TBL] [Abstract][Full Text] [Related]
16. Three types of serotonin-containing amacrine cells in tadpole retina have distinct clonal origins. Huang S; Moody SA J Comp Neurol; 1997 Oct; 387(1):42-52. PubMed ID: 9331170 [TBL] [Abstract][Full Text] [Related]
17. Dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the dopamine synthetic pathway in the arcuate nucleus of fetal rats. Ugrumov MV; Melnikova VI; Lavrentyeva AV; Kudrin VS; Rayevsky KS Neuroscience; 2004; 124(3):629-35. PubMed ID: 14980733 [TBL] [Abstract][Full Text] [Related]
18. Evidence for direct action of estradiol on growth hormone-releasing factor (GRF) in rat hypothalamus: localization of [3H]estradiol in GRF neurons. Shirasu K; Stumpf WE; Sar M Endocrinology; 1990 Jul; 127(1):344-9. PubMed ID: 1972921 [TBL] [Abstract][Full Text] [Related]
19. Immunocytochemical investigation of nuclear progestin receptor expression within dopaminergic neurones of the female rat brain. Lonstein JS; Blaustein JD J Neuroendocrinol; 2004 Jun; 16(6):534-43. PubMed ID: 15189328 [TBL] [Abstract][Full Text] [Related]
20. Pattern regulation in isolated halves and blastomeres of early Xenopus laevis. Kageura H; Yamana K J Embryol Exp Morphol; 1983 Apr; 74():221-34. PubMed ID: 6886596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]