These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 134994)

  • 1. Proton translocating ATPase of a thermophilic bacterium. Morphology, subunits, and chemical composition.
    Kagawa Y; Sone N; Yoshida M; Hirata H; Okamoto H
    J Biochem; 1976 Jul; 80(1):141-51. PubMed ID: 134994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton translocation by ATPase and bacteriorhodopsin.
    Kagawa Y; Ohno K; Yoshida M; Takeuchi Y; Sone N
    Fed Proc; 1977 May; 36(6):1815-8. PubMed ID: 15875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium.
    Okamoto H; Sone N; Hirata H; Yoshida M; Kagawa Y
    J Biol Chem; 1977 Sep; 252(17):6125-31. PubMed ID: 19467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of thermostable ATPase capable of energy coupling from its purified subunits.
    Yoshida M; Okamoto H; Sone N; Hirata H; Kagawa Y
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):936-40. PubMed ID: 139610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of the membrane moiety of the H+-ATPase complex into two kinds of subunits.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4219-23. PubMed ID: 151864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH dependence of H+ conduction through the membrane moiety of the H+-ATPase (F0 . F1) and effects of tyrosyl residue modification.
    Sone N; Hamamoto T; Kagawa Y
    J Biol Chem; 1981 Mar; 256(6):2873-7. PubMed ID: 6451621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton translocating ATPase: its pump, gate, and channel.
    Kagawa Y
    Adv Biophys; 1978; 10():209-47. PubMed ID: 26168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbodiimide-binding protein of H+-translocating ATPase and inhibition of H+ conduction by dicyclohexylcarbodiimide.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    J Biochem; 1979 Feb; 85(2):503-9. PubMed ID: 33978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and properties of a dicyclohexylcarbodiimide-sensitive adenosine triphosphatase from a thermophilic bacterium.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    J Biol Chem; 1975 Oct; 250(19):7917-23. PubMed ID: 240843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DCCD-sensitive ATPase (TF0 . F1) from a thermophilic bacterium: purification, dissociation into functional subunits, and reconstitution into vesicles capable of energy transformation.
    Kagawa Y; Sone N
    Methods Enzymol; 1979; 55():364-72. PubMed ID: 156844
    [No Abstract]   [Full Text] [Related]  

  • 11. Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    J Biol Chem; 1977 May; 252(9):2956-60. PubMed ID: 16011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of nutrients by a thermophilic bacterium--reconstruction of vesicles from crystalline ATPase or solubilized alanine carrier.
    Kagawa Y
    J Cell Physiol; 1976 Dec; 89(4):569-73. PubMed ID: 137906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly stable adenosine triphosphatase from a thermophillie bacterium. Purification, properties, and reconstitution.
    Yoshida M; Sone N; Hirata H; Kagawa Y
    J Biol Chem; 1975 Oct; 250(19):7910-6. PubMed ID: 240842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of vesicles capable of energy transformation from phospholipids and adenosine triphosphatase of a thermophilic bacterium.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    J Biochem; 1977 Feb; 81(2):519-28. PubMed ID: 14954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic characterization of the ATPase of the thermophilic bacterium PS3 and its isolated subunits.
    Rögner M; Gräber P
    J Biochem; 1986 Apr; 99(4):993-1003. PubMed ID: 2940234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional relationship of ATP synthases (F1F0) from Escherichia coli and the thermophilic bacterium PS3.
    Steffens K; Di Gioia A; Deckers-Hebestreit G; Altendorf K
    J Biol Chem; 1987 May; 262(13):6334-8. PubMed ID: 2437118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable structure of thermophilic proton ATPase beta subunit.
    Kagawa Y; Ishizuka M; Saishu T; Nakao S
    J Biochem; 1986 Oct; 100(4):923-34. PubMed ID: 2880841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formations of electrochemical proton gradient and adenosine triphosphate in proteoliposomes containing purified adenosine triphosphatase and bacteriorhodopsin.
    Sone N; Takeuchi Y; Yoshida M; Ohno K
    J Biochem; 1977 Dec; 82(6):1751-8. PubMed ID: 23379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid ATPase's formed from subunits of coupling factor F1's of Escherichia coli and thermophilic bacterium PS3.
    Takeda K; Hirano M; Kanazawa H; Nukiwa N; Kagawa Y; Futai M
    J Biochem; 1982 Feb; 91(2):695-701. PubMed ID: 6461646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation by ADP and Mg2+ of the inactivation of the F1-ATPase from the thermophilic bacterium, PS3, with dicyclohexylcarbodiimide.
    Yoshida M; Allison WS
    J Biol Chem; 1983 Dec; 258(23):14407-12. PubMed ID: 6227624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.