These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle. Davies NW; Standen NB; Stanfield PR J Physiol; 1992 Jan; 445():549-68. PubMed ID: 1501145 [TBL] [Abstract][Full Text] [Related]
3. Characterization of K(ATP) channels in intact mammalian skeletal muscle fibres. Barrett-Jolley R; McPherson GA Br J Pharmacol; 1998 Mar; 123(6):1103-10. PubMed ID: 9559893 [TBL] [Abstract][Full Text] [Related]
4. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg(2+) and pH. Allard B; Lazdunski M; Rougier O J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):283-96. PubMed ID: 7666359 [TBL] [Abstract][Full Text] [Related]
5. Voltage dependent inhibition of ATP sensitive potassium channels by flecainide in guinea pig ventricular cells. Wang DW; Sato T; Arita M Cardiovasc Res; 1995 Apr; 29(4):520-5. PubMed ID: 7796446 [TBL] [Abstract][Full Text] [Related]
6. Activation of ATP-sensitive K channels by a K channel opener (SR 44866) and the effect upon electrical and mechanical activity of frog skeletal muscle. Sauviat MP; Ecault E; Faivre JF; Findlay I Pflugers Arch; 1991 Apr; 418(3):261-5. PubMed ID: 1649991 [TBL] [Abstract][Full Text] [Related]
7. Modulation by Mg2+ and ADP of ATP-sensitive potassium channels in frog skeletal muscle. Forestier C; Vivaudou M J Membr Biol; 1993 Feb; 132(1):87-94. PubMed ID: 8459449 [TBL] [Abstract][Full Text] [Related]
8. Effects of pH upon the inhibition by sulphonylurea drugs of ATP-sensitive K+ channels in cardiac muscle. Findlay I J Pharmacol Exp Ther; 1992 Jul; 262(1):71-9. PubMed ID: 1625214 [TBL] [Abstract][Full Text] [Related]
9. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Davies NW Nature; 1990 Jan; 343(6256):375-7. PubMed ID: 2153936 [TBL] [Abstract][Full Text] [Related]
10. Effects of diazoxide and glyburide on ATP-sensitive K+ channels from hypertrophied ventricular myocytes. Ciampolillo F; Tung DE; Cameron JS J Pharmacol Exp Ther; 1992 Jan; 260(1):254-60. PubMed ID: 1530975 [TBL] [Abstract][Full Text] [Related]
11. Potassium currents in endfeet of isolated Müller cells from the frog retina. Skatchkov SN; Vyklický L; Orkand RK Glia; 1995 Sep; 15(1):54-64. PubMed ID: 8847101 [TBL] [Abstract][Full Text] [Related]
12. The effect of glibenclamide on frog skeletal muscle: evidence for K+ATP channel activation during fatigue. Light PE; Comtois AS; Renaud JM J Physiol; 1994 Mar; 475(3):495-507. PubMed ID: 8006831 [TBL] [Abstract][Full Text] [Related]
13. Intracellular protons control the affinity of skeletal muscle ATP-sensitive K+ channels for potassium-channel-openers. Forestier C; Depresle Y; Vivaudou M FEBS Lett; 1993 Jul; 325(3):276-80. PubMed ID: 8391482 [TBL] [Abstract][Full Text] [Related]
14. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro. Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189 [TBL] [Abstract][Full Text] [Related]
16. Changes in intracellular pH caused by high K in normal and acidified frog muscle. Relation to metabolic changes. Amorena CE; Wilding TJ; Manchester JK; Roos A J Gen Physiol; 1990 Nov; 96(5):959-72. PubMed ID: 2280254 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of potassium efflux and action potential shortening during ischaemia in isolated mammalian cardiac muscle. Gasser RN; Vaughan-Jones RD J Physiol; 1990 Dec; 431():713-41. PubMed ID: 2129231 [TBL] [Abstract][Full Text] [Related]
18. Cs(+) causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres. Gay LA; Stanfield PR Nature; 1977 May; 267(5607):169-70. PubMed ID: 16073434 [TBL] [Abstract][Full Text] [Related]