These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1350778)

  • 21. Biosynthesis of riboflavin: mechanism of formation of the ribitylamino linkage.
    Keller PJ; Le Van Q; Kim SU; Bown DH; Chen HC; Kohnle A; Bacher A; Floss HG
    Biochemistry; 1988 Feb; 27(4):1117-20. PubMed ID: 3130093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of F0, precursor of the F420 cofactor, requires a unique two radical-SAM domain enzyme and tyrosine as substrate.
    Decamps L; Philmus B; Benjdia A; White R; Begley TP; Berteau O
    J Am Chem Soc; 2012 Nov; 134(44):18173-6. PubMed ID: 23072415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tyrosine aminotransferase in AKR/J albino and C57BL/6J black mouse skin.
    Pomerantz SH; Li JP
    J Invest Dermatol; 1978 May; 70(5):240-5. PubMed ID: 25309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in riboflavin biosynthesis.
    Haase I; Gräwert T; Illarionov B; Bacher A; Fischer M
    Methods Mol Biol; 2014; 1146():15-40. PubMed ID: 24764086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of dietary threonine supplementation on tyrosine toxicity in the rat.
    Datta K; Ghosh JJ
    J Nutr; 1977 Sep; 107(9):1575-82. PubMed ID: 19567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of coenzyme F420 from Methanobacterium bryantii with 7- and 8-hydroxy-10-methyl-5-deazaisoalloxazine.
    Pol A; van der Drift C; Vogels GD; Cuppen TJ; Laarhoven WH
    Biochem Biophys Res Commun; 1980 Jan; 92(1):255-60. PubMed ID: 7356457
    [No Abstract]   [Full Text] [Related]  

  • 27. (Photo)chemistry of 5-deazaflavin. A clue to the mechanism of flavin-dependent (de)hydrogenation.
    Duchstein HJ; Fenner H; Hemmerich P; Knappe WR
    Eur J Biochem; 1979 Mar; 95(1):167-81. PubMed ID: 456348
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymes from the haloacid dehalogenase (HAD) superfamily catalyse the elusive dephosphorylation step of riboflavin biosynthesis.
    Haase I; Sarge S; Illarionov B; Laudert D; Hohmann HP; Bacher A; Fischer M
    Chembiochem; 2013 Nov; 14(17):2272-5. PubMed ID: 24123841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Flavin biogenesis in yeasts].
    Shavlovskiĭ GM; Logvinenko EM
    Ukr Biokhim Zh (1978); 1985; 57(4):98-112. PubMed ID: 3898499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tyrosine toxicity in the rat: effect of high intake of p-hydroxyphenylpyruvic acid and of force-feeding high tyrosine diet.
    Boctor AM; Harper AE
    J Nutr; 1968 Aug; 95(4):535-40. PubMed ID: 4385833
    [No Abstract]   [Full Text] [Related]  

  • 31. Stereochemical studies of a selenium-containing hydrogenase from Methanococcus vannielii: determination of the absolute configuration of C-5 chirally labeled dihydro-8-hydroxy-5-deazaflavin cofactor.
    Yamazaki S; Tsai L; Stadtman TC; Teshima T; Nakaji A; Shiba T
    Proc Natl Acad Sci U S A; 1985 Mar; 82(5):1364-6. PubMed ID: 3883357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic difference between 3,4-dihydroxyphenylpyruvic acid (DHPP) and 3-methoxy-4-hydroxyphenylpyruvic acid (MHPP).
    Maeda T; Shindo H
    Chem Pharm Bull (Tokyo); 1978 Jul; 26(7):2054-7. PubMed ID: 28856
    [No Abstract]   [Full Text] [Related]  

  • 33. Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii.
    Silva R; Aguiar TQ; Domingues L
    J Biotechnol; 2015 Jan; 193():37-40. PubMed ID: 25444878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Riboflavin synthase of Schizosaccharomyces pombe. Protein dynamics revealed by 19F NMR protein perturbation experiments.
    Fischer M; Schott AK; Kemter K; Feicht R; Richter G; Illarionov B; Eisenreich W; Gerhardt S; Cushman M; Steinbacher S; Huber R; Bacher A
    BMC Biochem; 2003 Dec; 4():18. PubMed ID: 14690539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymic pathway for thyroxine synthesis through p-hydroxy-3,5-diiodophenylpyruvic acid.
    Blasi F; Fragomele F; Covelli I
    Endocrinology; 1969 Sep; 85(3):542-51. PubMed ID: 4389637
    [No Abstract]   [Full Text] [Related]  

  • 36. [Operon of riboflavin biosynthesis in Bacillus subtilis. XVII. A study of the regulatory functions of the intermediate products and their derivatives].
    Perumov DA; Glazunov EA; Gorinchuk GF
    Genetika; 1986 May; 22(5):748-54. PubMed ID: 3089873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. D-erythro-neopterin biosynthesis in the methanogenic archaea Methanococcus thermophila and Methanobacterium thermoautotrophicum deltaH.
    Howell DM; White RH
    J Bacteriol; 1997 Aug; 179(16):5165-70. PubMed ID: 9260960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of acetoacetate on tyrosine metabolism in guinea-pigs fed a scorbutic diet.
    Bhai I; Reddi TG; Nath MC
    Indian J Biochem; 1970 Mar; 7(1):40-1. PubMed ID: 4394028
    [No Abstract]   [Full Text] [Related]  

  • 39. Effects of dietary protein content and glucagon administration on tyrosine metabolism and tyrosine toxicity in the rat.
    Ip CC; Harper AE
    J Nutr; 1973 Nov; 103(11):1594-607. PubMed ID: 4148059
    [No Abstract]   [Full Text] [Related]  

  • 40. [Mechanism of retroinhibition in e regulation of flavinogenesis in yeasts of genus Pichia].
    Shavlovskiĭ GM; Logvinenko EM; Koltun LV
    Mikrobiologiia; 1975; 44(1):171-3. PubMed ID: 1160631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.