These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 1350962)
1. Helix aspersa neurons maintain vigorous electrical activity when co-cultured with intact H. aspersa ganglia. Tiwari SK; Woodruff ML Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992; 101(1):163-74. PubMed ID: 1350962 [TBL] [Abstract][Full Text] [Related]
2. [Electrical connection between 2 bursting neurons in Helix pomatia]. Kononenko NI Neirofiziologiia; 1983; 15(4):399-403. PubMed ID: 6621745 [TBL] [Abstract][Full Text] [Related]
3. Dopamine inhibits transmission between the interneuron initiating pacemaker activity in a bursting neuron and the bursting neuron on the snail Helix pomatia. Kononenko NI; Storozhuk MV Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 May; 102(1):17-22. PubMed ID: 1358521 [TBL] [Abstract][Full Text] [Related]
4. The effects of acetylcholine, dopamine and noradrenaline on the visceral ganglion of Helix pomatia. I. Ongoing compound field potentials of low frequencies. Schütt A; Başar E; Bullock TH Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 May; 102(1):159-68. PubMed ID: 1358519 [TBL] [Abstract][Full Text] [Related]
5. Role of the axodendritic tree in the functioning of helix bursting neurons: generation of pacemaker activity and propagation of action potentials along the axon. Kononenko NI Neuroscience; 2000; 96(2):399-406. PubMed ID: 10683580 [TBL] [Abstract][Full Text] [Related]
6. CO2 chemosensitivity in Helix aspersa: three potassium currents mediate pH-sensitive neuronal spike timing. Denton JS; McCann FV; Leiter JC Am J Physiol Cell Physiol; 2007 Jan; 292(1):C292-304. PubMed ID: 16928774 [TBL] [Abstract][Full Text] [Related]
7. Actions of APGW-amide and GW-amide on identified central neurons of the snail, Helix aspersa. Chen ML; Walker RJ Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Jul; 102(3):509-16. PubMed ID: 1360358 [TBL] [Abstract][Full Text] [Related]
8. [Variability of the electrical activity of Helix pomatia neurons PPa2]. Kononenko NI Neirofiziologiia; 1981; 13(4):406-12. PubMed ID: 6117805 [TBL] [Abstract][Full Text] [Related]
9. Structure-activity studies on glutamate receptor sites of three identifiable neurones in the sub-oesophageal ganglia of Helix aspersa. Piggott SM; Kerkut GA; Walker RJ Comp Biochem Physiol C Comp Pharmacol; 1975 Jun; 51(1):91-100. PubMed ID: 239831 [No Abstract] [Full Text] [Related]
10. Role of dopamine and serotonin in modulation of snail defensive behavior. Chistyakova MV Neurosci Behav Physiol; 1990; 20(5):446-52. PubMed ID: 2077447 [TBL] [Abstract][Full Text] [Related]
11. Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa. Kerkut GA; Lambert JD; Gayton RJ; Loker JE; Walker RJ Comp Biochem Physiol A Comp Physiol; 1975 Jan; 50(1A):1-25. PubMed ID: 234036 [No Abstract] [Full Text] [Related]
12. Actions of the molluscan neuropeptide FMRF-amide on neurones in the suboesophageal ganglia of the snail Helix aspersa. Boyd PJ; Walker RJ Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(2):379-86. PubMed ID: 2861957 [TBL] [Abstract][Full Text] [Related]
13. Morphological and electrophysiological features of F76 and D1 neurones of the sub-oesophageal ganglia of Helix aspersa in vitro and in culture. Janahmadi M; Malmierca MS; Hearne PG; Green GG; Sanders DJ Anat Embryol (Berl); 1999 Jun; 199(6):563-72. PubMed ID: 10350136 [TBL] [Abstract][Full Text] [Related]
14. Modulation of identified stomatogastric ganglion neurons in primary cell culture. Turrigiano GG; Marder E J Neurophysiol; 1993 Jun; 69(6):1993-2002. PubMed ID: 8102397 [TBL] [Abstract][Full Text] [Related]
15. The possible site of action of 5-hydroxytryptamine, 6-hydroxytryptamine, tryptamine and dopamine on identified neurons in the central nervous system of the snail, Helix aspersa. Wright NJ; Walker RJ Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 78(1):217-25. PubMed ID: 6146474 [TBL] [Abstract][Full Text] [Related]
16. Effects of weak environmental magnetic fields on the spontaneous bioelectrical activity of snail neurons. Moghadam MK; Firoozabadi M; Janahmadi M J Membr Biol; 2011 Mar; 240(2):63-71. PubMed ID: 21249346 [TBL] [Abstract][Full Text] [Related]
17. Lobster stomatogastric neurons in primary culture. I. Basic characteristics. Panchin YV; Arshavsky YI; Selverston A; Cleland TA J Neurophysiol; 1993 Jun; 69(6):1976-92. PubMed ID: 8102396 [TBL] [Abstract][Full Text] [Related]
18. Influence of oxytocin on integration of postsynaptic potentials in molluscan neurons. Dyatlov VA Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 98(2-3):271-4. PubMed ID: 1712690 [TBL] [Abstract][Full Text] [Related]
19. Electrical properties of oxytocin neurons in organotypic cultures from postnatal rat hypothalamus. Jourdain P; Poulain DA; Theodosis DT; Israel JM J Neurophysiol; 1996 Oct; 76(4):2772-85. PubMed ID: 8899644 [TBL] [Abstract][Full Text] [Related]
20. Distinctive neurophysiological properties of embryonic trigeminal and geniculate neurons in culture. Grigaliunas A; Bradley RM; MacCallum DK; Mistretta CM J Neurophysiol; 2002 Oct; 88(4):2058-74. PubMed ID: 12364528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]