These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 1351298)

  • 1. The actomyosin ATPase: a two-state system.
    Geeves MA
    Philos Trans R Soc Lond B Biol Sci; 1992 Apr; 336(1276):63-70; discussion 70-1. PubMed ID: 1351298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of three-state docking of myosin S1 with actin in force generation.
    Geeves MA; Conibear PB
    Biophys J; 1995 Apr; 68(4 Suppl):194S-199S; discussion 199S-201S. PubMed ID: 7787067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [C-terminal sites of caldesmon drive ATP hydrolysis cycle by shifting actomyosin itermediates from strong to weak binding of myosin and actin].
    Pronina OE; Copeland O; Marston S; Borovikov IuS
    Tsitologiia; 2006; 48(1):9-18. PubMed ID: 16568830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of divalent cations on the formation and stability of myosin subfragment 1-ADP-phosphate analog complexes.
    Peyser YM; Ben-Hur M; Werber MM; Muhlrad A
    Biochemistry; 1996 Apr; 35(14):4409-16. PubMed ID: 8605190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of stable analogs of myosin ATPase intermediates for kinetic studies of the "weak" binding of myosin heads to F-actin.
    Rostkova EV; Moiseeva LN; Teplova MV; Nikolaeva OP; Levitsky DI
    Biochemistry (Mosc); 1999 Aug; 64(8):875-82. PubMed ID: 10498802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of inhibition of skeletal muscle actomyosin by N-benzyl-p-toluenesulfonamide.
    Shaw MA; Ostap EM; Goldman YE
    Biochemistry; 2003 May; 42(20):6128-35. PubMed ID: 12755615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity. The role of tropomyosin flexibility and end-to-end interactions.
    Lehrer SS; Golitsina NL; Geeves MA
    Biochemistry; 1997 Nov; 36(44):13449-54. PubMed ID: 9354612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads.
    Prochniewicz E; Walseth TF; Thomas DD
    Biochemistry; 2004 Aug; 43(33):10642-52. PubMed ID: 15311925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric dipole theory and thermodynamics of actomyosin molecular motor in muscle contraction.
    Lampinen MJ; Noponen T
    J Theor Biol; 2005 Oct; 236(4):397-421. PubMed ID: 15919094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Caldesmon inhibits formation of strongly bound myosin cross-bridges and activates an ability of weakly bound cross-bridges to transform actin monomers to the off-conformation].
    Vikhorev PG; Vikhoreva NN; Rosliakova MA; Chacko S; Borovikov IuS
    Tsitologiia; 2000; 42(5):444-53. PubMed ID: 10890050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caldesmon restricts the movement of both C- and N-termini of tropomyosin on F-actin in ghost fibers during the actomyosin ATPase cycle.
    Kulikova N; Pronina OE; Dabrowska R; Borovikov YS
    Biochem Biophys Res Commun; 2006 Jun; 345(1):280-6. PubMed ID: 16678131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repriming the actomyosin crossbridge cycle.
    Steffen W; Sleep J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12904-9. PubMed ID: 15326285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of acto-S1 interaction as a guide to a model for the crossbridge cycle.
    Geeves MA; Goody RS; Gutfreund H
    J Muscle Res Cell Motil; 1984 Aug; 5(4):351-61. PubMed ID: 6237117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yuji Tonomura: a pioneer in the field of energy transduction in muscle contraction.
    Onishi H
    J Biochem; 2009 Jul; 146(1):7-11. PubMed ID: 19581439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic characterization of brush border myosin-I ATPase.
    Jontes JD; Milligan RA; Pollard TD; Ostap EM
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14332-7. PubMed ID: 9405612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and equilibrium analysis of the myosin ATPase.
    De La Cruz EM; Ostap EM
    Methods Enzymol; 2009; 455():157-92. PubMed ID: 19289206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous buckling of contractile poroelastic actomyosin sheets.
    Ideses Y; Erukhimovitch V; Brand R; Jourdain D; Hernandez JS; Gabinet UR; Safran SA; Kruse K; Bernheim-Groswasser A
    Nat Commun; 2018 Jun; 9(1):2461. PubMed ID: 29941969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of the actomyosin ATPase. Four or six states?
    Stein LA
    FEBS Lett; 1991 Jan; 278(1):131-2. PubMed ID: 1825199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Allosteric control of olefin isomerization kinetics via remote metal binding and its mechanochemical analysis.
    Yu Y; O'Neill RT; Boulatov R; Widenhoefer RA; Craig SL
    Nat Commun; 2023 Aug; 14(1):5074. PubMed ID: 37604905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The actin-binding cleft: functional characterisation of myosin II with a strut mutation.
    Fujita-Becker S; Reubold TF; Holmes KC
    J Muscle Res Cell Motil; 2006; 27(2):115-23. PubMed ID: 16450056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.