These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 1351301)

  • 1. Nucleotide hydrolysis regulates the dynamics of actin filaments and microtubules.
    Carlier MF
    Philos Trans R Soc Lond B Biol Sci; 1992 Apr; 336(1276):93-7. PubMed ID: 1351301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin.
    Carlier MF; Valentin-Ranc C; Combeau C; Fievez S; Pantoloni D
    Adv Exp Med Biol; 1994; 358():71-81. PubMed ID: 7801813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous monitoring of Pi release following nucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay.
    Melki R; Fievez S; Carlier MF
    Biochemistry; 1996 Sep; 35(37):12038-45. PubMed ID: 8810908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of nucleotide hydrolysis in the polymerization of actin and tubulin.
    Carlier MF
    Cell Biophys; 1988; 12():105-17. PubMed ID: 2453274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide hydrolysis in cytoskeletal assembly.
    Carlier MF
    Curr Opin Cell Biol; 1991 Feb; 3(1):12-7. PubMed ID: 1854475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic evidence for a readily exchangeable nucleotide at the terminal subunit of the barbed ends of actin filaments.
    Teubner A; Wegner A
    Biochemistry; 1998 May; 37(20):7532-8. PubMed ID: 9585568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of a dynamic cytoskeleton.
    Mitchison TJ
    Philos Trans R Soc Lond B Biol Sci; 1995 Sep; 349(1329):299-304. PubMed ID: 8577841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of profilin on actin-bound nucleotide exchange and actin polymerization dynamics.
    Selden LA; Kinosian HJ; Estes JE; Gershman LC
    Biochemistry; 1999 Mar; 38(9):2769-78. PubMed ID: 10052948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate release during microtubule assembly: what stabilizes growing microtubules?
    Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM
    Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of myosin subfragment-1-induced assembly of CaG-actin and MgG-actin into F-actin-S1-decorated filaments.
    Fievez S; Carlier MF; Pantaloni D
    Biochemistry; 1997 Sep; 36(39):11843-50. PubMed ID: 9305976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of MeH73 in actin polymerization and ATP hydrolysis.
    Nyman T; Schüler H; Korenbaum E; Schutt CE; Karlsson R; Lindberg U
    J Mol Biol; 2002 Apr; 317(4):577-89. PubMed ID: 11955010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature and regulation of actin filament turnover in cells.
    Sheterline P; Handel SE; Molloy C; Hendry KA
    Acta Histochem Suppl; 1991; 41():303-9. PubMed ID: 1811266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin polymerization and ATP hydrolysis.
    Korn ED; Carlier MF; Pantaloni D
    Science; 1987 Oct; 238(4827):638-44. PubMed ID: 3672117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymerization and structure of nucleotide-free actin filaments.
    De La Cruz EM; Mandinova A; Steinmetz MO; Stoffler D; Aebi U; Pollard TD
    J Mol Biol; 2000 Jan; 295(3):517-26. PubMed ID: 10623543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nucleotide switch of tubulin and microtubule assembly: a polymerization-driven structural change.
    Buey RM; Díaz JF; Andreu JM
    Biochemistry; 2006 May; 45(19):5933-8. PubMed ID: 16681364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treadmilling and length distributions of active polar filaments.
    Erlenkämper C; Kruse K
    J Chem Phys; 2013 Oct; 139(16):164907. PubMed ID: 24182079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial Tubulins A and B Exhibit Polarized Growth, Mixed-Polarity Bundling, and Destabilization by GTP Hydrolysis.
    Díaz-Celis C; Risca VI; Hurtado F; Polka JK; Hansen SD; Maturana D; Lagos R; Mullins RD; Monasterio O
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28716960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic instability in a DNA-segregating prokaryotic actin homolog.
    Garner EC; Campbell CS; Mullins RD
    Science; 2004 Nov; 306(5698):1021-5. PubMed ID: 15528442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of microtubules by inorganic phosphate and its structural analogues, the fluoride complexes of aluminum and beryllium.
    Carlier MF; Didry D; Melki R; Chabre M; Pantaloni D
    Biochemistry; 1988 May; 27(10):3555-9. PubMed ID: 3408711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.