These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 1351896)
1. Heterogeneous development of calbindin-D28K expression in the striatal matrix. Liu FC; Graybiel AM J Comp Neurol; 1992 Jun; 320(3):304-22. PubMed ID: 1351896 [TBL] [Abstract][Full Text] [Related]
2. Species-specific patterns of glycoprotein expression in the developing rodent caudoputamen: association of 5'-nucleotidase activity with dopamine islands and striosomes in rat, but with extrastriosomal matrix in mouse. Schoen SW; Graybiel AM J Comp Neurol; 1993 Jul; 333(4):578-96. PubMed ID: 8103780 [TBL] [Abstract][Full Text] [Related]
3. Differential calbindin-immunoreactivity in dopamine neurons projecting to the rat striatal complex. Barrot M; Calza L; Pozza M; Le Moal M; Piazza PV Eur J Neurosci; 2000 Dec; 12(12):4578-82. PubMed ID: 11122372 [TBL] [Abstract][Full Text] [Related]
4. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. Kubota Y; Kawaguchi Y J Comp Neurol; 1993 Jun; 332(4):499-513. PubMed ID: 8349845 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneity of cadherin-8 expression in the neonatal rat striatum: comparison with striatal compartments. Korematsu K; Goto S; Okamura A; Ushio Y Exp Neurol; 1998 Dec; 154(2):531-6. PubMed ID: 9878188 [TBL] [Abstract][Full Text] [Related]
6. Evidence for target-specific nerve fiber outgrowth from subpopulations of grafted dopaminergic neurons: a retrograde tracing study using in oculo and intracranial grafting. Törnqvist N; Björklund L; Strömberg I Exp Neurol; 2001 Jun; 169(2):329-39. PubMed ID: 11358446 [TBL] [Abstract][Full Text] [Related]
7. Transient calbindin-D28k-positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex. Liu FC; Graybiel AM J Neurosci; 1992 Feb; 12(2):674-90. PubMed ID: 1740695 [TBL] [Abstract][Full Text] [Related]
8. Afferent islands are larger than mu-opioid receptor patch in striatum of rat pups. Nakamura KC; Fujiyama F; Furuta T; Hioki H; Kaneko T Neuroreport; 2009 Apr; 20(6):584-8. PubMed ID: 19287319 [TBL] [Abstract][Full Text] [Related]
9. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea. Huot P; Lévesque M; Parent A Brain; 2007 Jan; 130(Pt 1):222-32. PubMed ID: 17142832 [TBL] [Abstract][Full Text] [Related]
10. Postnatal development of striatal neurotensin immunoreactivity in relation to clusters of substance P immunoreactive neurons and the "dopamine islands" in the rat. Zahm DS; Eggerman KW; Sprung RF; Wesche DE; Payne E J Comp Neurol; 1990 Jun; 296(3):403-14. PubMed ID: 1694190 [TBL] [Abstract][Full Text] [Related]
11. Correspondence between the dopamine islands and striosomes of the mammalian striatum. Graybiel AM Neuroscience; 1984 Dec; 13(4):1157-87. PubMed ID: 6152035 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of striatal cell subtypes using in vivo intracellular recording and dye-labeling in rats: III. Morphological correlates and compartmental localization. Onn SP; Berger TW; Grace AA Synapse; 1994 Mar; 16(3):231-54. PubMed ID: 8197584 [TBL] [Abstract][Full Text] [Related]
13. Patterns of muscarinic cholinergic binding in the striatum and their relation to dopamine islands and striosomes. Nastuk MA; Graybiel AM J Comp Neurol; 1985 Jul; 237(2):176-94. PubMed ID: 4031121 [TBL] [Abstract][Full Text] [Related]
14. Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum. Takahashi K; Liu FC; Hirokawa K; Takahashi H J Neurosci Res; 2003 Jul; 73(1):61-72. PubMed ID: 12815709 [TBL] [Abstract][Full Text] [Related]
15. Chemical heterogeneity of the striosomal compartment in the human striatum. Prensa L; Giménez-Amaya JM; Parent A J Comp Neurol; 1999 Nov; 413(4):603-18. PubMed ID: 10495446 [TBL] [Abstract][Full Text] [Related]
16. Ontogeny of the striatal neurons expressing neuropeptide genes in the human fetus and neonate. Brana C; Charron G; Aubert I; Carles D; Martin-Negrier ML; Trouette H; Fournier MC; Vital C; Bloch B J Comp Neurol; 1995 Sep; 360(3):488-505. PubMed ID: 8543654 [TBL] [Abstract][Full Text] [Related]
17. Neurochemical compartmentalization of the globus pallidus in the rat: an immunocytochemical study of calcium-binding proteins. Rajakumar N; Rushlow W; Naus CC; Elisevich K; Flumerfelt BA J Comp Neurol; 1994 Aug; 346(3):337-48. PubMed ID: 7995854 [TBL] [Abstract][Full Text] [Related]
18. 5'-nucleotidase: a new marker for striosomal organization in the rat caudoputamen. Schoen SW; Graybiel AM J Comp Neurol; 1992 Aug; 322(4):566-76. PubMed ID: 1401250 [TBL] [Abstract][Full Text] [Related]
19. Neurochemical development of the hippocampal region in the fetal rhesus monkey. I. Early appearance of peptides, calcium-binding proteins, DARPP-32, and monoamine innervation in the entorhinal cortex during the first half of gestation (E47 to E90). Berger B; Alvarez C; Goldman-Rakic PS Hippocampus; 1993 Jul; 3(3):279-305. PubMed ID: 8353610 [TBL] [Abstract][Full Text] [Related]
20. The striatal mosaic in primates: patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum. Martin LJ; Hadfield MG; Dellovade TL; Price DL Neuroscience; 1991; 43(2-3):397-417. PubMed ID: 1681464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]