These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1351911)

  • 61. Sensitization to hyperthermia induced in a normal tissue by step-down heating.
    Lindegaard JC; Nielsen OS
    Int J Radiat Oncol Biol Phys; 1991 May; 20(5):1023-9. PubMed ID: 2022502
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Influence of low pH on the development and decay of 42 degrees C thermotolerance in CHO cells.
    Gerweck LE; Richards B; Michaels HB
    Int J Radiat Oncol Biol Phys; 1982 Nov; 8(11):1935-41. PubMed ID: 6891380
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of heat on the intracellular uptake and radiosensitization of 2-nitroimidazole hypoxic cell sensitizers in vitro.
    Brown DM; Cohen MS; Sagerman RH; Gonzalez-Mendez R; Hahn GM; Brown JM
    Cancer Res; 1983 Jul; 43(7):3138-42. PubMed ID: 6850622
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Step-down heating of CHO cells at 37.5-39 degrees C.
    Jung H
    Int J Hyperthermia; 1989; 5(6):665-73. PubMed ID: 2592781
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Temperature-dependent induction of thermotolerance by ethanol.
    Henle KJ; Moss AJ; Nagle WA
    Radiat Res; 1986 Dec; 108(3):327-35. PubMed ID: 3797638
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effect of GSH depletion on thermal radiosensitization.
    Freeman ML; Meredith MJ
    Int J Radiat Oncol Biol Phys; 1987 Sep; 13(9):1371-5. PubMed ID: 3624046
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Heat-induced morphological alterations in non-tolerant and thermotolerant cells.
    Perlaky L; Lee Y; Dewey WC
    Int J Radiat Biol; 1991 Nov; 60(5):819-32. PubMed ID: 1680952
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rapidly reversible enzyme inhibition in a temperature-sensitive mammalian cell mutant lacks thermotolerance.
    Vidair CA; Dewey WC
    J Cell Physiol; 1989 Aug; 140(2):227-32. PubMed ID: 2745560
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Low pH suppresses synthesis of heat-shock proteins and thermotolerance.
    Hang H; Fox MH
    Radiat Res; 1994 Oct; 140(1):24-30. PubMed ID: 7938451
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inhibition of repair of radiation-induced DNA damage by thermal shock in Chinese hamster ovary cells.
    Warters RL; Lyons BW; Axtell-Bartlett J
    Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Mar; 51(3):505-17. PubMed ID: 3494700
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Correlation between polymerase beta activity and thermal radiosensitization in Chinese hamster ovary cells.
    Dikomey E; Jung H
    Recent Results Cancer Res; 1988; 109():35-41. PubMed ID: 3175298
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Thermotolerance and heat shock protein induction by slow rates of heating.
    Anderson RL; Herman TS; van Kersen I; Hahn GM
    Int J Radiat Oncol Biol Phys; 1988 Sep; 15(3):717-25. PubMed ID: 3417491
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Some peculiarities of the sequential action of heat and ionizing radiation on yeast cells.
    Petin VG; Kim JK; Zhurakovskaya GP; Kim SH
    Int J Hyperthermia; 2009 Feb; 25(1):72-8. PubMed ID: 19219703
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Attenuation of chronic thermotolerance by KNK437, a benzylidene lactam compound, enhances thermal radiosensitization in mild temperature hyperthermia combined with low dose-rate irradiation.
    Sakurai H; Kitamoto Y; Saitoh J; Nonaka T; Ishikawa H; Kiyohara H; Shioya M; Fukushima M; Akimoto T; Hasegawa M; Nakano T
    Int J Radiat Biol; 2005 Sep; 81(9):711-8. PubMed ID: 16368649
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of step-down and step-up heating on the development of thermotolerance in a C3H mammary carcinoma in vivo.
    Lindegaard JC; Nielsen OS; Overgaard J
    Int J Hyperthermia; 1995; 11(2):231-9. PubMed ID: 7790737
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reduction of DNA-polymerase beta activity of CHO cells by single and combined heat treatments.
    Dikomey E; Becker W; Wielckens K
    Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Nov; 52(5):775-85. PubMed ID: 3500145
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cellular glutathione, thermal sensitivity, and thermotolerance in Chinese hamster fibroblasts and their heat-resistant variants.
    Shrieve DC; Li GC; Astromoff A; Harris JW
    Cancer Res; 1986 Apr; 46(4 Pt 1):1684-7. PubMed ID: 3948159
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of hyperthermia on activity of three glycosyltransferases in Chinese hamster ovary cells.
    Henle KJ; Stone A; Chatterjee SK
    Cancer Res; 1988 Oct; 48(20):5717-21. PubMed ID: 3139282
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differences in thermotolerance induced by heat or sodium arsenite: correlation between redistribution of a 26-kDa protein and development of protein synthesis-independent thermotolerance in CHO cells.
    Lee YJ; Kim DH; Hou ZZ; Corry PM
    Radiat Res; 1991 Sep; 127(3):325-34. PubMed ID: 1886989
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of cycloheximide or puromycin on induction of thermotolerance by heat in Chinese hamster ovary cells: dose fractionation at 45.5 degrees C1.
    Lee YJ; Dewey WC
    Cancer Res; 1987 Nov; 47(22):5960-6. PubMed ID: 3664499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.