These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1352443)

  • 21. The production and utilization of nitric oxide by a new, denitrifying strain of Pseudomonas aeruginosa.
    Vosswinkel R; Neidt I; Bothe H
    Arch Microbiol; 1991; 156(1):62-9. PubMed ID: 1772347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus.
    Balderston WL; Sherr B; Payne WJ
    Appl Environ Microbiol; 1976 Apr; 31(4):504-8. PubMed ID: 1267447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced sulfur compound oxidation by Thiobacillus caldus.
    Hallberg KB; Dopson M; Lindström EB
    J Bacteriol; 1996 Jan; 178(1):6-11. PubMed ID: 8550443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans.
    Beller HR; Chain PS; Letain TE; Chakicherla A; Larimer FW; Richardson PM; Coleman MA; Wood AP; Kelly DP
    J Bacteriol; 2006 Feb; 188(4):1473-88. PubMed ID: 16452431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans.
    Hazeu W; Bijleveld W; Grotenhuis JT; Kakes E; Kuenen JG
    Antonie Van Leeuwenhoek; 1986; 52(6):507-18. PubMed ID: 3813523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria.
    Yoshinari T; Knowles R
    Biochem Biophys Res Commun; 1976 Apr; 69(3):705-10. PubMed ID: 817722
    [No Abstract]   [Full Text] [Related]  

  • 27. Examining thiosulfate-driven autotrophic denitrification through respirometry.
    Mora M; Guisasola A; Gamisans X; Gabriel D
    Chemosphere; 2014 Oct; 113():1-8. PubMed ID: 25065782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a novel biocatalyst system for sulfide oxidation.
    McComas C; Sublette KL; Jenneman G; Bala G
    Biotechnol Prog; 2001; 17(3):439-46. PubMed ID: 11386863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of Thiobacillus sp from aerobic sludge of distillery and dairy effluent treatment plants and its sulfide oxidation activity at different concentrations.
    Ravichandra P; Mugeraya G; Rao AG; Ramakrishna M; Jetty A
    J Environ Biol; 2007 Oct; 28(4):819-23. PubMed ID: 18405118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The link between the microbial ecology, gene expression, and biokinetics of denitrifying polyphosphate-accumulating systems under different electron acceptor combinations.
    Vieira A; Ribera-Guardia A; Marques R; Barreto Crespo MT; Oehmen A; Carvalho G
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6725-6737. PubMed ID: 29860594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient Accumulation of NO2- and N2O during Denitrification Explained by Assuming Cell Diversification by Stochastic Transcription of Denitrification Genes.
    Hassan J; Qu Z; Bergaust LL; Bakken LR
    PLoS Comput Biol; 2016 Jan; 12(1):e1004621. PubMed ID: 26731685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo emission of dinitrogen by earthworms via denitrifying bacteria in the gut.
    Horn MA; Mertel R; Gehre M; Kästner M; Drake HL
    Appl Environ Microbiol; 2006 Feb; 72(2):1013-8. PubMed ID: 16461643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of Nitrous Oxide Emission from Sulfide- and Sulfur-Based Autotrophic Denitrification Processes.
    Liu Y; Peng L; Ngo HH; Guo W; Wang D; Pan Y; Sun J; Ni BJ
    Environ Sci Technol; 2016 Sep; 50(17):9407-15. PubMed ID: 27501384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.
    Ng KY; Kamimura K; Sugio T
    J Biosci Bioeng; 2000; 90(2):193-8. PubMed ID: 16232841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Central Small RNA Regulatory Circuit Controlling Bacterial Denitrification and N
    Gaimster H; Hews CL; Griffiths R; Soriano-Laguna MJ; Alston M; Richardson DJ; Gates AJ; Rowley G
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of sulfide and acetylene on nitrous oxide reduction by soil and by Pseudomonas aeruginosa.
    Tam TY; Knowles R
    Can J Microbiol; 1979 Oct; 25(10):1133-8. PubMed ID: 119571
    [No Abstract]   [Full Text] [Related]  

  • 37. The reduction of nitrous oxide to dinitrogen by Escherichia coli.
    Kaldorf M; Linne von Berg KH; Meier U; Servos U; Bothe H
    Arch Microbiol; 1993; 160(6):432-9. PubMed ID: 8297209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions.
    Beller HR; Letain TE; Chakicherla A; Kane SR; Legler TC; Coleman MA
    J Bacteriol; 2006 Oct; 188(19):7005-15. PubMed ID: 16980503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced biological S
    Imran MA; Li X; Yang Z; Xu J; Han L
    Environ Technol; 2023 Feb; 44(6):841-852. PubMed ID: 34559602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Respiration-driven proton translocation with nitrite and nitrous oxide in Paracoccus denitrificans.
    Boogerd FC; Van Verseveld HW; Stouthamer AH
    Biochim Biophys Acta; 1981 Dec; 638(2):181-91. PubMed ID: 7317386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.