These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1352447)

  • 1. Differences in 2-oxoglutarate dehydrogenase regulation in liver and kidney.
    Smith BC; Clotfelter LA; Cheung JY; LaNoue KF
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):819-26. PubMed ID: 1352447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis.
    Lowry M; Ross BD
    Biochem J; 1980 Sep; 190(3):771-80. PubMed ID: 7470078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2-Oxoglutarate dehydrogenase is a more significant source of O2(·-)/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue.
    Mailloux RJ; Gardiner D; O'Brien M
    Free Radic Biol Med; 2016 Aug; 97():501-512. PubMed ID: 27394173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.
    Mailloux RJ; Craig Ayre D; Christian SL
    Redox Biol; 2016 Aug; 8():285-97. PubMed ID: 26928132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of 2-oxoglutarate dehydrogenase complex by inorganic phosphate, Mg(2+), and other effectors.
    Rodríguez-Zavala JS; Pardo JP; Moreno-Sánchez R
    Arch Biochem Biophys; 2000 Jul; 379(1):78-84. PubMed ID: 10864444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential requirements of calcium for oxoglutarate dehydrogenase and mitochondrial nitric-oxide synthase under hypoxia: impact on the regulation of mitochondrial oxygen consumption.
    Solien J; Haynes V; Giulivi C
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):111-7. PubMed ID: 15972265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase.
    Mkrtchyan G; Graf A; Bettendorff L; Bunik V
    Neurochem Int; 2016 Dec; 101():66-75. PubMed ID: 27773789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors.
    Lai JC; Cooper AJ
    J Neurochem; 1986 Nov; 47(5):1376-86. PubMed ID: 3760866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.
    BALAZS R
    Biochem J; 1965 May; 95(2):497-508. PubMed ID: 14340100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that adrenaline activates key oxidative enzymes in rat liver by increasing intramitochondrial [Ca2+].
    McCormack JG
    FEBS Lett; 1985 Jan; 180(2):259-64. PubMed ID: 3917939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The two catalytic components of the 2-oxoglutarate dehydrogenase complex in rat cerebral synaptic and nonsynaptic mitochondria: comparison of the response to in vitro treatment with ammonia, hyperammonemia, and hepatic encephalopathy.
    Faff-Michalak L; Albrecht J
    Neurochem Res; 1993 Feb; 18(2):119-23. PubMed ID: 8474555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart.
    Bunik V; Kaehne T; Degtyarev D; Shcherbakova T; Reiser G
    FEBS J; 2008 Oct; 275(20):4990-5006. PubMed ID: 18783430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria.
    McCormack JG
    Biochem J; 1985 Nov; 231(3):581-95. PubMed ID: 3000355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of oxidative phosphorylation by Mg2+ in rat heart mitochondria.
    Rodríguez-Zavala JS; Moreno-Sánchez R
    J Biol Chem; 1998 Apr; 273(14):7850-5. PubMed ID: 9525878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the activation of rat liver pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase by adrenaline and glucagon. Role of increases in intramitochondrial Ca2+ concentration.
    McCormack JG
    Biochem J; 1985 Nov; 231(3):597-608. PubMed ID: 3935105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct effects of glucagon and vasopressin on proline metabolism in isolated hepatocytes. The role of oxoglutarate dehydrogenase.
    Staddon JM; McGivan JD
    Biochem J; 1984 Jan; 217(2):477-83. PubMed ID: 6141793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of bicarbonate on glutamine and glutamate metabolism by rat kidney cortex mitochondria.
    Scaduto RC; Schoolwerth AC
    Am J Physiol; 1985 Oct; 249(4 Pt 2):F573-81. PubMed ID: 2864861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicarbonate and the pathway of glutamate oxidation in isolated rat-liver mitochondria.
    Wanders RJ; Meijer AJ; Groen AK; Tager JM
    Eur J Biochem; 1983 Jun; 133(1):245-54. PubMed ID: 6852031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of rat kidney mitochondrial metabolism in acute acidosis.
    Schoolwerth AC; Strzelecki T; Gesek FA
    Am J Kidney Dis; 1989 Oct; 14(4):303-6. PubMed ID: 2801699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of renal tricarboxylic acid cycle metabolism to various acid-base states: study with [3-13C,5-15N]glutamine.
    Nissim I; Nissim I; Yudkoff M
    Miner Electrolyte Metab; 1991; 17(1):21-31. PubMed ID: 1770913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.