These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 1353365)
1. Large-scale culture system of human CD4+ helper/killer T cells for the application to adoptive tumour immunotherapy. Nakamura Y; Tokuda Y; Iwasawa M; Tsukamoto H; Kidokoro M; Kobayashi N; Kato S; Mitomi T; Habu S; Nishimura T Br J Cancer; 1992 Jul; 66(1):20-6. PubMed ID: 1353365 [TBL] [Abstract][Full Text] [Related]
2. Generation propagation, and targeting of human CD4+ helper/killer T cells induced by anti-CD3 monoclonal antibody plus recombinant IL-2. An efficient strategy for adoptive tumor immunotherapy. Nishimura T; Nakamura Y; Takeuchi Y; Tokuda Y; Iwasawa M; Kawasaki A; Okumura K; Habu S J Immunol; 1992 Jan; 148(1):285-91. PubMed ID: 1345787 [TBL] [Abstract][Full Text] [Related]
3. Human c-erbB-2 proto-oncogene product as a target for bispecific-antibody-directed adoptive tumor immunotherapy. Nishimura T; Nakamura Y; Tsukamoto H; Takeuchi Y; Tokuda Y; Iwasawa M; Yamamoto T; Masuko T; Hashimoto Y; Habu S Int J Cancer; 1992 Mar; 50(5):800-4. PubMed ID: 1347516 [TBL] [Abstract][Full Text] [Related]
4. Bispecific antibody-directed antitumor activity of human CD4+ helper/killer T cells induced by anti-CD3 monoclonal antibody plus interleukin 2. Nishimura T; Nakamura Y; Takeuchi Y; Gao XH; Tokuda Y; Okumura K; Habu S Jpn J Cancer Res; 1991 Nov; 82(11):1207-10. PubMed ID: 1836455 [TBL] [Abstract][Full Text] [Related]
5. Specific targeting of in vitro-activated human antitumour effector cells using anti-CD3 x anti-c-erbB-2 bispecific antibody. Tsukamoto H; Nakamura Y; Masuko T; Hashimoto Y; Habu S; Nishimura T Immunol Cell Biol; 1993 Apr; 71 ( Pt 2)():109-15. PubMed ID: 8098011 [TBL] [Abstract][Full Text] [Related]
6. Superantigen-induced human CD4+ helper/killer T cell phenomenon. Selective induction of Th1 helper/killer T cells and application to tumor immunotherapy. Kuge S; Miura Y; Nakamura Y; Mitomi T; Habu S; Nishimura T J Immunol; 1995 Feb; 154(4):1777-85. PubMed ID: 7836762 [TBL] [Abstract][Full Text] [Related]
7. [An efficient methods for the induction of human antitumor effector CD4+ and CD8+ T cells: their application to tumor immunotherapy]. Nishimura T; Kuge S; Watanabe K; Lee U; Yahata T; Habu S Hum Cell; 1994 Sep; 7(3):131-7. PubMed ID: 7873496 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic and functional modulation of interleukin-2-activated peripheral blood mononuclear cells by anti-CD3 and anti-CD28 antibody. Yoshino I; Yano T; Miyamoto M; Sugimachi K; Kimura G; Nomoto K Lymphokine Cytokine Res; 1993 Aug; 12(4):191-6. PubMed ID: 8218591 [TBL] [Abstract][Full Text] [Related]
9. Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Perussia B; Ramoni C; Anegon I; Cuturi MC; Faust J; Trinchieri G Nat Immun Cell Growth Regul; 1987; 6(4):171-88. PubMed ID: 2960890 [TBL] [Abstract][Full Text] [Related]
11. Generation and cytotoxic profile of human peripheral blood CD4+ T lymphocytes. Smyth MJ Immunol Cell Biol; 1992 Dec; 70 ( Pt 6)():379-90. PubMed ID: 1363236 [TBL] [Abstract][Full Text] [Related]
12. Requirement of monocytes and T-helper cells during development of tumor cell cytotoxicity in targeted T cells. Smans KA; Hoylaerts MF; De Broe ME Cancer Immunol Immunother; 1994 Jan; 38(1):43-52. PubMed ID: 8299118 [TBL] [Abstract][Full Text] [Related]
13. Immune modulation and safety profile of adoptive immunotherapy using expanded autologous activated lymphocytes against advanced cancer. Sun Z; Shi L; Zhang H; Shao Y; Wang Y; Lin Y; Li X; Bai C Clin Immunol; 2011 Jan; 138(1):23-32. PubMed ID: 21041120 [TBL] [Abstract][Full Text] [Related]
14. A feasible method for expansion of peripheral blood lymphocytes by culture with immobilized anti-CD3 monoclonal antibody and interleukin-2 for use in adoptive immunotherapy of cancer patients. Sekine T; Shiraiwa H; Yamazaki T; Tobisu K; Kakizoe T Biomed Pharmacother; 1993; 47(2-3):73-8. PubMed ID: 8218952 [TBL] [Abstract][Full Text] [Related]
15. Development of a clinical model for ex vivo expansion of multiple populations of effector cells for adoptive cellular therapy. Meehan KR; Wu J; Webber SM; Barber A; Szczepiorkowski ZM; Sentman C Cytotherapy; 2008; 10(1):30-7. PubMed ID: 18202972 [TBL] [Abstract][Full Text] [Related]
16. Ex vivo expansion of dendritic-cell-activated antigen-specific CD4+ T cells with anti-CD3/CD28, interleukin-7, and interleukin-15: potential for adoptive T cell immunotherapy. Chen HW; Liao CH; Ying C; Chang CJ; Lin CM Clin Immunol; 2006 Apr; 119(1):21-31. PubMed ID: 16406844 [TBL] [Abstract][Full Text] [Related]
17. Characterization of natural killer and natural killer-like T cells derived from ex vivo expanded and activated cord blood mononuclear cells: implications for adoptive cellular immunotherapy. Ayello J; van de Ven C; Cairo E; Hochberg J; Baxi L; Satwani P; Cairo MS Exp Hematol; 2009 Oct; 37(10):1216-29. PubMed ID: 19638292 [TBL] [Abstract][Full Text] [Related]
18. In vitro stimulation and expansion of human tumour-reactive CD8+ cytotoxic T lymphocytes by anti-CD3/CD28/CD137 magnetic beads. Teschner D; Wenzel G; Distler E; Schnürer E; Theobald M; Neurauter AA; Schjetne K; Herr W Scand J Immunol; 2011 Aug; 74(2):155-64. PubMed ID: 21517928 [TBL] [Abstract][Full Text] [Related]
19. Long-term growth of lymphokine-activated killer (LAK) cells: role of anti-CD3, beta-IL 1, interferon-gamma and -beta. Ochoa AC; Gromo G; Alter BJ; Sondel PM; Bach FH J Immunol; 1987 Apr; 138(8):2728-33. PubMed ID: 2435804 [TBL] [Abstract][Full Text] [Related]
20. Ex vivo expansion of natural killer cells from human peripheral blood mononuclear cells co-stimulated with anti-CD3 and anti-CD52 monoclonal antibodies. Masuyama J; Murakami T; Iwamoto S; Fujita S Cytotherapy; 2016 Jan; 18(1):80-90. PubMed ID: 26549384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]