BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 1353415)

  • 1. Effects of alpha and beta adrenergic blockade on coronary arterial microvessels in the beating canine heart.
    Sekiguchi N; Kanatsuka H; Komaru T; Akai K; Sato K; Wang Y; Sugi M; Ashikawa K; Takishima T
    Cardiovasc Res; 1992 Apr; 26(4):415-21. PubMed ID: 1353415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuropeptide Y modulates vasoconstriction in coronary microvessels in the beating canine heart.
    Komaru T; Ashikawa K; Kanatsuka H; Sekiguchi N; Suzuki T; Takishima T
    Circ Res; 1990 Nov; 67(5):1142-51. PubMed ID: 2225353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous microvascular coronary alpha-adrenergic vasoconstriction.
    Chilian WM; Layne SM; Eastham CL; Marcus ML
    Circ Res; 1989 Feb; 64(2):376-88. PubMed ID: 2563238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of calcitonin gene-related peptide on coronary microvessels and its role in acute myocardial ischemia.
    Sekiguchi N; Kanatsuka H; Sato K; Wang Y; Akai K; Komaru T; Takishima T
    Circulation; 1994 Jan; 89(1):366-74. PubMed ID: 8281672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of alpha-adrenergic blockade on arrhythmias induced by acute myocardial ischemia and reperfusion in the dog.
    Bolli R; Fisher DJ; Taylor AA; Young JB; Miller RR
    J Mol Cell Cardiol; 1984 Dec; 16(12):1101-17. PubMed ID: 6152473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of regional alpha- and beta-blockade on resting and hyperemic coronary blood flow in conscious, unstressed humans.
    Hodgson JM; Cohen MD; Szentpetery S; Thames MD
    Circulation; 1989 Apr; 79(4):797-809. PubMed ID: 2564323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of alpha-adrenergic receptor blockade on coronary circulation in conscious dogs.
    Macho P; Hintze TH; Vatner SF
    Am J Physiol; 1982 Jul; 243(1):H94-8. PubMed ID: 6124131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of diadenosine tetraphosphate (AP4A) on coronary arterial microvessels in the beating canine heart.
    Sugimura A; Kanatsuka H; Tanikawa T; Ong BH; Shirato K
    Jpn Circ J; 2000 Nov; 64(11):868-75. PubMed ID: 11110433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of an ATP sensitive potassium channel opener, levcromakalim, on coronary arterial microvessels in the beating canine heart.
    Sato K; Kanatsuka H; Sekiguchi N; Akai K; Wang Y; Sugimura A; Kumagai T; Komaru T; Shirato K
    Cardiovasc Res; 1994 Dec; 28(12):1780-6. PubMed ID: 7867030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of beta 2-adrenergic receptors on coronary resistance during exercise.
    DiCarlo SE; Blair RW; Bishop VS; Stone HL
    J Appl Physiol (1985); 1988 Jun; 64(6):2287-93. PubMed ID: 2900233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of alpha-adrenergic cardiac stimulation in anesthetized dogs: can this play a role in propranolol insensitive cardiostimulatory effects of celiprolol.
    Jolly SR; Smith RD; Wolf PS; Russ TP
    Res Commun Chem Pathol Pharmacol; 1986 Dec; 54(3):339-54. PubMed ID: 2879327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ergonovine-induced constrictions of epicardial coronary arteries in conscious dogs: alpha-adrenoceptors are not involved.
    Holtz J; Held W; Sommer O; Kühne G; Bassenge E
    Basic Res Cardiol; 1982; 77(3):278-91. PubMed ID: 6126180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular sites and mechanisms responsible for reactive hyperemia in the coronary circulation of the beating canine heart.
    Kanatsuka H; Sekiguchi N; Sato K; Akai K; Wang Y; Komaru T; Ashikawa K; Takishima T
    Circ Res; 1992 Oct; 71(4):912-22. PubMed ID: 1516163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedforward sympathetic coronary vasodilation in exercising dogs.
    Gorman MW; Tune JD; Richmond KN; Feigl EO
    J Appl Physiol (1985); 2000 Nov; 89(5):1892-902. PubMed ID: 11053341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacology of AH 5158; a drug which blocks both - and -adrenoceptors.
    Farmer JB; Kennedy I; Levy GP; Marshall RJ
    Br J Pharmacol; 1972 Aug; 45(4):660-75. PubMed ID: 4404413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of coronary blood flow by counteraction of coronary vascular alpha and beta adrenergic activation during experimental pliable coronary stenosis.
    Sakamoto S; Yokoyama M; Fukuzaki H
    Jpn Circ J; 1986 May; 50(5):416-25. PubMed ID: 2876113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced contribution of NO to exercise-induced coronary responses after alpha-adrenergic receptor blockade.
    Takamura M; Parent R; Lavallée M
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H508-15. PubMed ID: 11788398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alpha-adrenergic coronary constriction during esophageal distention in the dog.
    Gayheart PA; Gwirtz PA; Bravenec JS; Longlet N; Jones CE
    J Cardiovasc Pharmacol; 1991 May; 17(5):747-53. PubMed ID: 1713989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of coronary microvascular response to nipradilol and nitroglycerin.
    Lamping KG; Bloom EN
    Pharmacology; 1995 Nov; 51(5):315-22. PubMed ID: 8584583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pertussis toxin-sensitive G protein mediates coronary microvascular control during autoregulation and ischemia in canine heart.
    Komaru T; Wang Y; Akai K; Sato K; Sekiguchi N; Sugimura A; Kumagai T; Kanatsuka H; Shirato K
    Circ Res; 1994 Sep; 75(3):556-66. PubMed ID: 7914838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.