These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 13534708)

  • 1. A synthesis of L-arginyl-L-arginine.
    ZERVAS L; OTANI T; WINITZ M; GREENSTEIN JP
    Arch Biochem Biophys; 1958 May; 75(1):290-1. PubMed ID: 13534708
    [No Abstract]   [Full Text] [Related]  

  • 2. Synthesis and biological properties of L-arginyl-Lprolyl-glycyl-L-phenylalanyl-L-seryl-L-phenylalanyl-L-arginine, an octapeptide related to bradykinin.
    NICOLAIDES ED; DEWALD HA; SHORLEY PG; COLLIER HO
    Nature; 1960 Aug; 187():773-4. PubMed ID: 14426973
    [No Abstract]   [Full Text] [Related]  

  • 3. THE SYNTHESIS OF D-HISTIDYL-L-PHENYLALANYL-L-ARGINYL-L-TRYPTOPHYLGLYCINE AND L-HISTIDYL-L-PHENYLALANYL-L-ARGINYL-D-TRYPTOPHYLGLYCINE AND THEIR PHYSIOLOGICAL PROPERTIES IN FROG MELANOCYTE.
    YAJIMA H; KUBO K
    Biochim Biophys Acta; 1965 Mar; 97():596-7. PubMed ID: 14323609
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis and kinetic parameters of hydrolysis by trypsin of some acyl-arginyl-p-nitroanilides and peptides containing arginyl-p-nitroanilide.
    Juliano MA; Juliano L
    Braz J Med Biol Res; 1985; 18(4):435-45. PubMed ID: 3915433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on peptides. XI. The effect on melanotropic activity of altering the arginyl residue in L-histidyl-L-phenylalanyl-L-arginyl-L-tryptophylglycine.
    Yajima H; Kubo K; Kinomura Y; Lande S
    Biochim Biophys Acta; 1966 Oct; 127(2):545-8. PubMed ID: 5964993
    [No Abstract]   [Full Text] [Related]  

  • 6. Occurrence of D-histidine residues in antimicrobial poly(arginyl-histidine), conferring resistance to enzymatic hydrolysis.
    Nishikawa M; Ogawa K
    FEMS Microbiol Lett; 2004 Oct; 239(2):255-9. PubMed ID: 15476974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt Taste Enhancing l-Arginyl Dipeptides from Casein and Lysozyme Released by Peptidases of Basidiomycota.
    Harth L; Krah U; Linke D; Dunkel A; Hofmann T; Berger RG
    J Agric Food Chem; 2018 Mar; 66(10):2344-2353. PubMed ID: 27509299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of salt taste enhancing arginyl dipeptides in protein digests and fermented fish sauces by means of a sensomics approach.
    Schindler A; Dunkel A; Stähler F; Backes M; Ley J; Meyerhof W; Hofmann T
    J Agric Food Chem; 2011 Dec; 59(23):12578-88. PubMed ID: 22044387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of arginine and arginyl-L-arginine on the glucose-mediated pH fall of Streptococcus rattus and Streptococcus milleri (short communication).
    Levy RD; Eisenberg AD
    Caries Res; 1992; 26(2):142-5. PubMed ID: 1521307
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis of phenylalanyl-arginyl-leucyl-aspartic acid: a model study of the coupling of arginine-terminal tryptic fragments of proteins.
    Izumiya N; Noda K; Anfinsen CB
    Arch Biochem Biophys; 1971 May; 144(1):237-44. PubMed ID: 5117528
    [No Abstract]   [Full Text] [Related]  

  • 11. Peptidebond synthesis in higher plants. II. Studies on the mechanism of synthesis of gamma-glutamylcysteine.
    WEBSTER GC; VARNER JE
    Arch Biochem Biophys; 1954 Sep; 52(1):22-32. PubMed ID: 13198234
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition of the release of endothelium-derived relaxing factor in vitro and in vivo by dipeptides containing NG-nitro-L-arginine.
    Thiemermann C; Mustafa M; Mester PA; Mitchell JA; Hecker M; Vane JR
    Br J Pharmacol; 1991 Sep; 104(1):31-8. PubMed ID: 1786515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of base pairs by polar peptides in double stranded DNA.
    Laigle A; Chinsky L; Turpin PY
    Nucleic Acids Res; 1982 Mar; 10(5):1707-20. PubMed ID: 7071020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilisation of certain derivatives of alanine and arginine by yeasts.
    Harris G; MacWilliam IC
    Biochim Biophys Acta; 1966 May; 119(2):416-8. PubMed ID: 5961632
    [No Abstract]   [Full Text] [Related]  

  • 15. A stable activated ester of benzyloxycarbonyl-nitro-L-arginine and its use in peptide synthesis.
    Kovacs J; Ceprini MQ
    Chem Ind; 1965 Dec; 52():2100. PubMed ID: 5849981
    [No Abstract]   [Full Text] [Related]  

  • 16. Stimulation of bovine brain phospholipase C activity by myelin basic protein requires arginyl residues in peptide linkage.
    Tompkins TA; Moscarello MA
    Arch Biochem Biophys; 1993 May; 302(2):476-83. PubMed ID: 7683860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein arginine N-methyltransferase substrate preferences for different nη-substituted arginyl peptides.
    Thomas D; Koopmans T; Lakowski TM; Kreinin H; Vhuiyan MI; Sedlock SA; Bui JM; Martin NI; Frankel A
    Chembiochem; 2014 Jul; 15(11):1607-13. PubMed ID: 25044481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic Modification of Soluble Cyanophycin Using the Type II Peptidyl Arginine Deiminase from Oryctolagus cuniculus.
    Wiefel L; Steinbüchel A
    Macromol Biosci; 2016 Jul; 16(7):1064-71. PubMed ID: 26953800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem use of carboxypeptidase Y reactor and displacement chromatograph for peptide synthesis.
    Cramer SM; el Rassi Z; Horváth C
    J Chromatogr; 1987 May; 394(2):305-14. PubMed ID: 3624339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intestinal absorption of some dipeptides.
    NEWEY H; SMYTH DH
    J Physiol; 1959 Jan; 145(1):48-56. PubMed ID: 13621419
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.