These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 13535643)

  • 1. Sulfide oxidation in rat tissues.
    BAXTER CF; VAN REEN R; PEARSON PB; ROSENBERG C
    Biochim Biophys Acta; 1958 Mar; 27(3):584-91. PubMed ID: 13535643
    [No Abstract]   [Full Text] [Related]  

  • 2. Some aspects of sulfide oxidation by rat-liver preparations.
    BAXTER CF; VAN REEN R
    Biochim Biophys Acta; 1958 Jun; 28(3):567-73. PubMed ID: 13560408
    [No Abstract]   [Full Text] [Related]  

  • 3. [Role of transamination and pyridoxal phosphate in the enzymatic formation of hydrogen sulfide from cysteine by the rat liver under anaerobiosis].
    CHATAGNER F; SAURET-IGNAZI G
    Bull Soc Chim Biol (Paris); 1956 Jun; 38(2-3):415-28. PubMed ID: 13342749
    [No Abstract]   [Full Text] [Related]  

  • 4. [Different cellular localization of 2 enzymatic systems producing hydrogen sulfide from cysteine in the rat liver].
    CHATAGNER F; JOLLES-BERGERET B; LABOUESSE J
    C R Hebd Seances Acad Sci; 1960 Dec; 251():3097-9. PubMed ID: 13692575
    [No Abstract]   [Full Text] [Related]  

  • 5. On the mechanism of sulfide oxidation in biological systems.
    SORBO B
    Biochim Biophys Acta; 1960 Feb; 38():349-51. PubMed ID: 13832863
    [No Abstract]   [Full Text] [Related]  

  • 6. [Cysteine biosynthesis from serine and hydrogen sulfide].
    SCHLOSSMANN K; LYNEN F
    Biochem Z; 1957; 328(7):591-4. PubMed ID: 13426154
    [No Abstract]   [Full Text] [Related]  

  • 7. [On the pathways of the enzymatic formation of hydrogen sulfide from L-cysteine in the liver].
    GORIACHENKOVA EV
    Biokhimiia; 1961; 26():541-8. PubMed ID: 13707246
    [No Abstract]   [Full Text] [Related]  

  • 8. [Non-enzymic production of hydrogen sulfide by Saccharmomyces cerevisiae preparation].
    KREKE CW
    Bull Soc Chim Biol (Paris); 1958; 40(9-10):1299-306. PubMed ID: 13596830
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of initial sulfide concentration on sulfide and phenol oxidation under denitrifying conditions.
    Beristain-Cardoso R; Texier AC; Sierra-Alvarez R; Razo-Flores E; Field JA; Gómez J
    Chemosphere; 2009 Jan; 74(2):200-5. PubMed ID: 18990426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of sulfide oxidation and toxicity in rat mitochondria by dehydroascorbic acid.
    Hildebrandt TM
    Biochim Biophys Acta; 2011 Sep; 1807(9):1206-13. PubMed ID: 21699882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidation of sulfide to thiosulfate by metalloprotein complexes and by ferritin.
    BAXTER CF; VAN REEN R
    Biochim Biophys Acta; 1958 Jun; 28(3):573-8. PubMed ID: 13560409
    [No Abstract]   [Full Text] [Related]  

  • 12. Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques.
    Gonzalez-Sanchez A; Tomas M; Dorado AD; Gamisans X; Guisasola A; Lafuente J; Gabriel D
    Water Sci Technol; 2009; 59(7):1323-9. PubMed ID: 19380997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Oxidation of sulfide minerals by Thiobacillus thiooxidans].
    Karavaĭko GI; Moshniakova SA
    Mikrobiologiia; 1974; 43(1):156-8. PubMed ID: 4601474
    [No Abstract]   [Full Text] [Related]  

  • 14. Positive feedback during sulfide oxidation fine-tunes cellular affinity for oxygen.
    Abou-Hamdan A; Ransy C; Roger T; Guedouari-Bounihi H; Galardon E; Bouillaud F
    Biochim Biophys Acta; 2016 Sep; 1857(9):1464-1472. PubMed ID: 27137409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation.
    Rohwerder T; Gehrke T; Kinzler K; Sand W
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):239-48. PubMed ID: 14566432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfide reduction in fellmongery effluent by red sulfur bacteria.
    Cooper DE; Rands MB; Woo CP
    J Water Pollut Control Fed; 1975 Aug; 47(8):2088-100. PubMed ID: 1177352
    [No Abstract]   [Full Text] [Related]  

  • 17. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation--part A.
    Vera M; Schippers A; Sand W
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7529-41. PubMed ID: 23720034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfur metabolism in Beggiatoa alba.
    Schmidt TM; Arieli B; Cohen Y; Padan E; Strohl WR
    J Bacteriol; 1987 Dec; 169(12):5466-72. PubMed ID: 3316186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel biocatalyst system for sulfide oxidation.
    McComas C; Sublette KL; Jenneman G; Bala G
    Biotechnol Prog; 2001; 17(3):439-46. PubMed ID: 11386863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of adaptation on the metabolism of dodecylthioacetic acid (a 3-thia fatty acid) in rat tissues.
    Bergseth S; Hvattum E; Skrede S; Hokland BM
    Biochim Biophys Acta; 1990 Jun; 1045(1):90-3. PubMed ID: 2369589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.