These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 13535715)

  • 1. On the supposed catalytic oxidation of thiol groups by catalase.
    KEILIN D; NICHOLLS P
    Biochim Biophys Acta; 1958 Apr; 28(1):225. PubMed ID: 13535715
    [No Abstract]   [Full Text] [Related]  

  • 2. [The ovomucoid-catalase bond and identification of the groups within the ovomucoid responsible for anti-catalase activity].
    ABRIGNANI F; MUTOLO V
    Boll Soc Ital Biol Sper; 1955; 31(7-8):926-8. PubMed ID: 13315731
    [No Abstract]   [Full Text] [Related]  

  • 3. Pyrroloquinoline quinone (coenzyme PQQ) and the oxidation of SH residues in proteins.
    Park J; Churchich JE
    Biofactors; 1992 Apr; 3(4):257-60. PubMed ID: 1318718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The role of thiol redox systems in the resistance of Escherichia coli in the stationary phase].
    Smirnova GV; Muzyka NG; Oktiabr'skiĭ ON
    Mikrobiologiia; 2011; 80(5):619-24. PubMed ID: 22168005
    [No Abstract]   [Full Text] [Related]  

  • 5. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The design of redox active thiol peroxidase mimics: Dihydrolipoic acid recognition correlates with cytotoxicity and prooxidant action.
    Zadehvakili B; McNeill SM; Fawcett JP; Giles GI
    Biochem Pharmacol; 2016 Mar; 104():19-28. PubMed ID: 26801688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase.
    Ordoñez ID; Cadenas E
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavin-catalyzed aerobic oxidation of sulfides and thiols with formic acid/triethylamine.
    Murahashi S; Zhang D; Iida H; Miyawaki T; Uenaka M; Murano K; Meguro K
    Chem Commun (Camb); 2014 Sep; 50(71):10295-8. PubMed ID: 25056359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interactions of thiol compounds with porcine erythrocyte catalase.
    Takeda A; Miyahara T; Hachimori A; Samejima T
    J Biochem; 1980 Feb; 87(2):429-39. PubMed ID: 7358647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State of oxidation of nonprotein sulfhydryl compounds in vitamin B12 deficiency.
    O'DELL BL; ERICKSON BA; NEWBERNE PM; FLYNN LM
    Am J Physiol; 1961 Jan; 200():99-101. PubMed ID: 13730059
    [No Abstract]   [Full Text] [Related]  

  • 11. [On the mechanism of the catalase-hydrogen peroxide reaction. II. The active centers of catalase and their mode of action].
    Hermel H; Havemann R
    Biochim Biophys Acta; 1966 Nov; 128(2):283-95. PubMed ID: 5971869
    [No Abstract]   [Full Text] [Related]  

  • 12. Special issue: Papers from the NATO Advanced Research Workshop on Thiol Metabolism and Redox Regulation. April 10-13, 2002, Pisa, Italy.
    Biofactors; 2003; 17(1-4):vii-ix, 1-324. PubMed ID: 14969266
    [No Abstract]   [Full Text] [Related]  

  • 13. Susceptibilities of intracellular and surface sulphydryl groups of Escherichia coli to oxidation by hyperoxia.
    Stees JL; Brown OR
    Microbios; 1973; 7(28):257-66. PubMed ID: 4584425
    [No Abstract]   [Full Text] [Related]  

  • 14. Pathways of peroxynitrite oxidation of thiol groups.
    Quijano C; Alvarez B; Gatti RM; Augusto O; Radi R
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):167-73. PubMed ID: 9078258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACCELERATING EFFECT OF COPPER ION ON THE REACTIVATION OF REDUCED TAKA-AMYLASE A THROUGH CATALYSIS OF THE OXIDATION OF SULFHYDRYL GROUPS.
    TAKAGI T; ISEMURA T
    J Biochem; 1964 Oct; 56():344-50. PubMed ID: 14240986
    [No Abstract]   [Full Text] [Related]  

  • 16. Observations upon the relation between sulphydryl groups and pyruvate oxidation in brain tissue.
    PETERS RA; WAKELIN RW
    Biochem J; 1946 Jul; 40(4):513-6. PubMed ID: 20273635
    [No Abstract]   [Full Text] [Related]  

  • 17. Proceedings: ADP synthesis by oxidation of a copper(II)-thiol complex with oxygen.
    Bäuerlein E
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1172-3. PubMed ID: 4376759
    [No Abstract]   [Full Text] [Related]  

  • 18. Protein-thiol oxidation, from single proteins to proteome-wide analyses.
    Le Moan N; Tacnet F; Toledano MB
    Methods Mol Biol; 2008; 476():181-98. PubMed ID: 19157017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation.
    Rigo A; Corazza A; di Paolo ML; Rossetto M; Ugolini R; Scarpa M
    J Inorg Biochem; 2004 Sep; 98(9):1495-501. PubMed ID: 15337601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic oxidation of sulfhydryl groups by o-phenanthroline copper complex.
    Kobashi K
    Biochim Biophys Acta; 1968 May; 158(2):239-45. PubMed ID: 4871609
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.